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A B S T R A C T   

The rapid spread of COVID-19 across the world has raised concerns about the responsiveness of cities and 
healthcare systems during pandemics. Recent studies try to model how the number of COVID-19 infections will 
likely grow and impact the demand for hospitalization services at national and regional levels. However, less 
attention has been paid to the geographic access to COVID-19 healthcare services and to hospitals’ response 
capacity at the local level, particularly in urban areas in the Global South. This paper shows how transport 
accessibility analysis can provide actionable information to help improve healthcare coverage and responsive-
ness. It analyzes accessibility to COVID-19 healthcare at high spatial resolution in the 20 largest cities of Brazil. 
Using network-distance metrics, we estimate the vulnerable population living in areas with poor access to 
healthcare facilities that could either screen or hospitalize COVID-19 patients. We then use a new balanced 
floating catchment area (BFCA) indicator to estimate spatial, income, and racial inequalities in access to hospitals 
with intensive care unit (ICU) beds and mechanical ventilators while taking into account congestion effects. 
Based on this analysis, we identify substantial social and spatial inequalities in access to health services during 
the pandemic. The availability of ICU equipment varies considerably between cities, and it is substantially lower 
among black and poor communities. The study maps territorial inequalities in healthcare access and reflects on 
different policy lessons that can be learned for other countries based on the Brazilian case.   

1. Introduction 

The global outbreak of the new coronavirus (SARS-CoV-2) has raised 
serious concerns about the responsiveness of healthcare systems and 
particularly about how vulnerable population groups might be affected 
(Lancet, 2020; WHO, 2020, Almeida et al., 2020). A rapidly growing 
body of research has emerged to model how the number of COVID-19 
infections will likely grow and impact the demand for hospitalization 
services globally (Petropoulos and Makridakis, 2020; Walter et al., 
2020) and at the national level (Arenas et al., 2020; Moghadas et al., 
2020; Paez, 2020; Paez et al., n.d.; Wu et al., 2020) as well as at the 
regional and local levels (Barrozo et al., 2020a; Castro et al., 2020). 
However, less attention has been paid to the geographic access to 
COVID-19 healthcare services and to hospitals’ response capacity at the 

local level within urban areas, despite the potential relationships be-
tween accessibility to healthcare resources and mortality (Ji et al., 
2020). Early work by Ji et al. (2020) and Rader et al. (2020), for 
example, considered resources at the provincial level in China and at the 
county level in the USA. Still, we are not aware of studies that investi-
gate the issue of resource allocation at higher spatial resolutions, 
particularly in the context of Latin America, where the epicenter of the 
pandemic shifted in June 2020. 

This study aims to present estimates of geographic accessibility to 
COVID-19 healthcare at a high spatial resolution within Brazil’s 20 
largest cities. Healthcare services in Brazil are known to be unevenly 
distributed across the country and also within cities (Amaral et al., 
2017). In this context, it is crucial to map where vulnerable social groups 
confront poor accessibility to health services. Similarly, it becomes 
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paramount to identify which healthcare facilities are likely to face 
surges in demand due to the need to hospitalize severely ill patients. In 
this paper, we combine traditional and novel accessibility metrics to 
address these questions. Using network-distance metrics, we first esti-
mate the number of vulnerable people living in areas with poor access to 
inpatient or outpatient facilities able to provide care for patients with 
suspected or confirmed cases of COVID-19. Next, we use a new balanced 
floating catchment area method (BFCA) proposed by (Paez et al., 2019) 
to analyze levels of access to hospitals that could treat patients with 
severe symptoms of COVID-19, taking into account healthcare system 
capacity and competition effects for Intensive Care Unit (ICU) beds with 
mechanical ventilators. This new BFCA indicator is used to estimate 
income and racial inequalities in access to COVID-19 health services 
while accounting for congestion effects. 

The remainder of this paper is as follows. The next section provides 
relevant background information regarding the evolution of the COVID- 
19 pandemic in Brazil and accessibility analysis. Sections 3 and 4 present 
the data and methods used in this research. Then, the results of the 
empirical analysis are presented and discussed in section 5. Finally, we 
offer some concluding remarks, including policy implications and di-
rections for future research. 

2. Background 

2.1. COVID-19 in Brazil 

The first confirmed case of COVID-19 in Latin America was in late 
February 2020, in Brazil. The person was a man from São Paulo who had 
traveled that month to Italy (Souza et al., 2020). This case was typical of 
the beginning of the epidemic in Brazil, with other early disease cases 
imported via international flights coming mostly from Italy and the 
United States (Candido et al., 2020). By early June, Brazil had become, 
after the United States, the country with the highest number of cases of 
COVID-19 in the world. In early July, less than five months after the first 
case of COVID-19 in Brazil, over 1.8 million cases have been confirmed, 
and over 70 thousand deaths have been attributed to the disease, 45% of 
which concentrated in the 20 largest cities of the country. 

The earliest cases of COVID-19 in Brazil were concentrated among 
middle and upper-class people (Souza et al., 2020; Li et al., 2020), who 
typically can afford to pay for private healthcare or use health services 
intermediated by private health insurance. This is not the case for 
lower-income groups, who are largely dependent on Brazil’s public 
health system (Castro et al., 2019), and among whom community 
transmission rapidly increased the number of infections. This develop-
ment is particularly worrisome as low-income groups also typically face 
poor transport services and poor access to health, education, and 
employment opportunities (Pereira et al., 2019). In fact, previous 
research has identified critical spatial gaps in accessibility to emergency 
services in Brazil (Rocha et al., 2017). To further complicate matters, 
other research has linked poor accessibility to higher pneumonia mor-
tality (Zaman et al., 2014). 

Given the rapid growth of COVID-19 in Brazil, it is essential to map 
the potential stress on the country’s healthcare system (Almeida et al., 
2020; Barrozo et al., 2020a). Previous studies show an unusual increase 
in the numbers of deaths (Barrozo et al., 2020a) and admissions to 
hospitals due to COVID-19 (InfoGripe, 2020). These studies raise con-
cerns about the overload the pandemic can generate to the public Uni-
fied Health System (Sistema Único de Saúde - SUS), which already 
started showing signs of collapse similar to those observed in Italy and 
Spain (Grasselli et al., 2020; Legido-Quigley et al., 2020). The work of 
Noronha et al. (2020) found that even in an optimistic scenario, of an 
infection level of 0.1% in the first month, roughly half of the nation’s 
health regions would face a grave deficit of ICU beds to meet the demand 
for admission of COVID-19 patients. Research by Barrozo et al. (2020a) 
and regional modeling studies conducted by Coelho et al. (2020) and 
Castro et al. (2020) suggest the pressure on the health system is more 

likely to reach critical levels in large urban centers, where the number of 
confirmed cases is higher. 

These previous studies in Brazil analyze the dynamics of COVID-19 
across different regions, states, and municipalities. Nonetheless, there 
is still a lack of studies that look at the COVID-19 healthcare provision 
within urban areas, and at what actionable insights can be drawn from 
the analysis of vulnerable groups and their access to health services at a 
higher spatial resolution. The looming crisis faced by the health system 
due to COVID-19 requires many emergency actions. For this purpose, it 
is essential for healthcare planners to have an understanding of the 
neighborhoods with less access to health services and equipment, and to 
identify the hospitals that might suffer overloaded demand for 
admissions. 

2.2. Healthcare accessibility 

A commonly used indicator to measure geographic access to 
healthcare is the shortest distance/travel time to the closest facility 
(Geurs and van Wee, 2004; Neutens, 2015). This indicator is widely used 
in part because it is relatively simple to calculate and straightforward to 
interpret, and thus easily communicated to policy-makers. However, a 
well-known limitation of this indicator is that it overlooks congestion 
effects since it does not account for potential population demand nor for 
levels of service supply. 

Another popular approach to measure access to healthcare is the 
family of Floating Catchment Area (FCA) methods (Matthews et al., 
2019). A key advantage of this family of indicators is that it accounts for 
capacity restrictions, local congestion effects, as well as cross-border 
healthcare-seeking behavior (Neutens, 2015). The common rationale 
underlying FCA methods is to calculate accessibility levels in sequential 
steps. The first step is to calculate the provider-to-population ratio (PPR) 
of each health facility as a ratio between its service supply (e.g., number 
of ICU beds) and its potential service demand given by the population 
that falls within some catchment area. The second step is to calculate 
accessibility levels of each population center by aggregating the PPR of 
every healthcare provider accessible from each population center. 

The first indicator of this sort is the two-step floating catchment area 
(2SFCA), proposed in the early 2000s (Luo and Wang, 2003; Radke and 
Mu, 2000). Since then, multiple authors have proposed incremental 
improvements to the basic model to incorporate more sophisticated 
impedance functions (Dai, 2010; Luo and Qi, 2009), to consider sub-
optimal configurations of health systems (Delamater, 2013) and to ac-
count for spatially adaptive floating catchments (Matthews et al., 2019; 
Matthew R. McGrail and Humphreys, 2009) and trip-chaining behavior 
(Fransen et al., 2015). 

A fundamental limitation of FCA methods is that they overestimate 
both service demand and supply, which can generate misleading 
accessibility estimates (Delamater, 2013; Paez et al., 2019; Wan et al., 
2012). Demand inflation occurs when populations that fall within the 
overlap of catchment areas are counted more than once as potential 
demand for multiple facilities. Supply inflation, on the other hand, 
happens when the level of service of a healthcare unit is simultaneously 
allocated to multiple population centers (Paez et al., 2019). Until 
recently, two approaches had been proposed to address this issue. Wan 
et al. (2012) introduced the Three-Step Float Catchment Area (3SFCA), 
which deflates demand by introducing an initial step that splits a pop-
ulation center’s potential demand over multiple health facilities pro-
portional to transport costs/distances. Meanwhile, Delamater (2013) 
proposed the Modified Two-Step Floating Catchment Area (M2SFCA), 
which deflates the supply side by increasing the friction of distance in a 
way that allocates levels of service more locally. Nonetheless, both 
methods only partially fix the inflation problem, as they compound the 
effects of impedance functions to address either demand inflation 
(3SFCA) or supply inflation (M2SFCA). 

To overcome this limitation, Paez et al. (2019) recently introduced a 
new indicator to the FCA family, which we term here as the Balanced 
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Float Catchment Area (BFCA). The new BFCA uses a standardized 
impedance matrix to generate a proportional allocation of demand and 
service level, fixing both demand and supply inflation issues in FCA 
calculations. The result is a more intuitive measure of accessibility that 
1) accounts for competition effects, 2) provides a local version of the 
provider-to-population ratio (PPR) that is interpreted similarly to a 
regional PPR; and 3) preserves system-wide population and level of 
service, overcoming inflation issues of both demand and service levels. 
Estimating accessibility during a pandemic is a suitable application of 
this method because congestion over the short term is one of the 
fundamental issues to address. Therefore, the analysis must account 
accurately for competition for scarce resources if policy interventions 
are to have any hope of addressing shortfalls effectively. The BFCA 
approach is described in more detail in the following section. 

3. Data 

Data for Brazil’s 20 largest cities (Appendix Figure A) are drawn from 
the Access to Opportunities Project (Pereira et al., 2019).1 The method 
combines data from national household surveys, administrative records 
of the federal and municipal governments, satellite images and collab-
orative mapping data to estimate accessibility at a high spatial resolu-
tion. The analysis is based on a hexagonal grid that corresponds to the 
global H3 index at resolution 8, with a size of 357 m (short diagonal) and 
an area of 0.74 km2; this is approximately the size of a typical city block 
(https://h3geo.org/docs/core-library/restable). 

Original sociodemographic data comes from the 2010 population 
census conducted by the Brazilian Institute of Geography and Statistics 
(IBGE). These data are aggregated to the hexagonal grid using dasy-
metric interpolation in two steps, as follows. Data on population count, 

income, race, and age distribution are gathered at the census tract level. 
Population counts are then updated based on municipal-level de-
mographic projections for 2020, published by Freire et al. (2020). The 
total projected population of each city in 2020 was distributed across 
census tracts assuming that the population’s relative distribution by 
district and age cohort of each sector remained constant between 2010 
and 2020. We then used dasymetric interpolation to pass information 
from census tracts to a finer regular grid of 200 m with population count 
data considering aerial intersection and population sizes. Finally, these 
data were reaggregated from the regular grid to the hexagonal grid. 

Data on healthcare facilities associated with the SUS, as registered in 
the National Registry of Health Facilities (CNES), at the end of 2019 
were geocoded and made publicly available by Pereira et al. (2019). For 
this paper, these data were complemented with updated information 
from the CNES for February 2020 about the number of adult ICU beds 
and ventilators in each healthcare facility. We also included geolocated 
data on 30 field hospitals and reactivated hospitals in 15 cities up to 
April 2, 2020. These hospitals have eased demand on other hospitals and 
expanded the health system’s capillarity by adding a total of 868 beds in 
ICUs and semi-intensive or semi-critical care units. 

Finally, we used street network data from OpenStreetMap and 
topography data from satellite images generated by the Japanese Spatial 
Agency (JAXA, 2011). These data were processed with OpenTripPlanner 
to generate the door-to-door travel times and distances between the 
centroids of hexagons with vulnerable populations and healthcare fa-
cilities in each city. OpenTripPlanner is an open routing algorithm for 
multimodal transport networks that takes street network characteristics 
and terrain elevation into account to model pedestrian routing. 

4. Methods 

The analysis presented in the paper is divided into two parts, as 
described next. 

Table 1 
Low-income population above 50 years old with access to healthcare in Brazil’s 20 largest cities, 2020.  

City Total 
population 

Vulnerable 
population** 

(A) 
Vulnerable Pop. with poor access to basic 
health services 

(B) 
Vulnerable Pop. with poor access to ICU 
hospitalization 

(B)/Vulnerable 
Pop. 
(%) 

Rio de Janeiro 6592.2 692.5 51.9 384.3 55.5 
São Paulo 12142.6 1053.6 33.2 263.1 25 
Brasília 3052.5 180.3 21.1 121 67.1 
Curitiba 1927 172.9 5.1 116.4 67.3 
Belo Horizonte 2469.9 244 7.2 92.3 37.8 
Fortaleza 2651.8 193.5 6.5 77.7 40.2 
São Gonçalo 1075.4 112.9 8.8 72.6 64.3 
Duque de 

Caxias 
905.1 81.3 13.5 67 82.4 

Porto Alegre 1480.5 159.6 8.6 60.3 37.8 
Goiânia 1509.4 118.3 11.4 59.4 50.2 
Campinas 1208.9 115.1 12.2 58.1 50.5 
Guarulhos 1389.9 98.7 4.3 48 48.6 
Recife 1607 147.1 0.6 42.9 29.2 
Campo Grande 895.6 69.7 5 42.9 61.5 
Maceió 1042 74.2 8.4 38.2 51.5 
Salvador 2831.6 217.4 7.8 35.3 16.2 
Belém 1360.1 97.2 8.7 32.9 33.8 
Manaus 2216.1 111.6 2.3 24.8 22.2 
São Luís 1080.4 69.3 10.2 18.6 26.8 
Natal 867.9 63 1.6 10.2 16.2 

Total 48305.9 4072.2 228.4 1666 40.9 

Obs. 
- Population in thousands. 
- ** Population above 50 years old and in the bottom half of the income distribution. 
- (A) Low-income people above 50 years old who cannot access a healthcare facility in less than 30 min walking. 
- (B) Low-income people above 50 years old who live more than 15 km away from the nearest hospital with an ICU bed and mechanical ventilator. 
Source: authors’ own elaboration using data from Pereira et al. (2019), healthcare facilities data from CNES on February 2020, and population projections for 2020 
from Freire et al. (2020). 

1 More information about the Access to Opportunities Project and its data-
bases are available at: https://www.ipea.gov.br/acessooportunidades/en/. 
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4.1. Maximum distance to the nearest facility by vulnerable population 

As noted in the background, a commonly used measure of accessi-
bility is distance/travel time to the nearest facility. In the first part of the 
analysis, we estimate for each city the number and residential locations 
of vulnerable populations who: (a) cannot access within 30 min on foot 

an establishment associated with the SUS that can perform triage and 
refer patients suspected of COVID-19 infection for hospitalization; and 
(b) live further than 5 km from a hospital with capacity to admit COVID- 
19 patients with adult ICU beds and ventilators. Vulnerable population 
groups were defined as people above 50 years old with lower income (in 
the bottom half of the income distribution). These criteria were chosen 

Fig. 1. Access to COVID-19 healthcare in São Paulo (A) and Manaus (B), 2020. (Panel 1) Vulnerable populations that cannot access a primary healthcare facility in 
less than 30 min walking. (Panel 2) Vulnerable populations that live farther than 5 km to the nearest hospital with ICU bed and mechanical ventilator. 
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based on evidence found by previous studies regarding the vulnerability 
of people older than 50 years in Brazil to COVID-19 (Souza et al., 2020). 
As well, low-income individuals tend to depend more on the public 
health system (Castro et al., 2019) and to face more significant diffi-
culties of urban mobility and access to health services (Pereira et al., 
2019).2 That said, the method is applicable to any population group of 
interest. 

All time and distance thresholds were chosen as a first exploratory 
analysis following the official recommendation from the Health Ministry 
and local officials (state and municipal), who recommend that people 
with suspected COVID-19 infection stay at home if the symptoms are 
mild or go to the nearest health unit for an initial interview (triage) and 

notification of the surveillance team (Brasil, 2020b). Patients with se-
vere symptoms should be referred for admission to hospitals in general 
wards or ICUs (Brasil, 2020b). In Brazil, the typical pattern is for people 
to use hospitals as entry points for daily health services and emergency 
care (Brasil, 2020b). Following clinical management and fast track 
service protocols (Brasil, 2020a, 2020b), this analysis included those 
primary health service facilities with capabilities to screen patients 
suspected of COVID-19, refer patients to specialized services, as well as 
facilities with more advanced service levels, such as emergency care 

Fig. 2. Access to COVID-19 healthcare in Rio de Janeiro (A) and Fortaleza (B), 2020. (Panel 1) Vulnerable populations that cannot access a primary healthcare 
facility in less than 30 min walking. (Panel 2) Vulnerable populations that live farther than 5 km to the nearest hospital with ICU bed and mechanical ventilator. 

2 Ideally, it would be important also to consider the population with 
comorbidities, such as hypertension, diabetes and cardiovascular or respiratory 
diseases, because people with these profiles are at greater risk of COVID-19 
infection, with greater severity and lethality (Guan et al., 2020; Yang et al., 
2020). However, data with this level of detail are not yet available. 
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centers, first aid posts, and hospitals.3 

Accessibility levels by public transportation were not considered 
because collective transportation is not recommended for people with 
symptoms of COVID-19. Besides this, various cities saw a drop of over 
70% in the supply of transit services due to isolation measures (NTU, 
2020). This reduction makes public transport services less reliable and 
more hazardous for contagion due to the agglomeration of people at 
stops/stations and aboard vehicles (Costa et al., 2020). 

4.2. Balanced Floating Catchment Areas 

In the second part of the analysis, we consider accessibility to health 
services while taking into account healthcare system capacity and 
congestion effects by means of Balanced Floating Catchment Areas. In 
this part, we focus on access to those facilities that could provide hos-
pitalization in ICUs to support patients with COVID-19. This analysis 
estimates provider-to-population ratios from both origin and destination 
perspectives. To do so, we use (1) the balanced float catchment area 
(BFCA) to calculate for each hexagonal cell the number of accessible ICU 
beds with ventilators, and (2) a partial version of BFCA to calculate for 
each hospital the ratio between the number of ICU beds with ventilators 
available and the population of the corresponding catchment area. 

Floating Catchment Area approaches are generally defined in two 
key steps. In the first stage, the population to be serviced is allocated to 

each service point (in this case, a health care facility) as follows: 

Pj =
∑n

i=1
Piwij  

where Pi is the population at population center i (i = 1,⋯,n) and wij is a 
weight for location pair i − j (j = 1,⋯,J). This weight typically depends 
on the cost of transportation between locations i (which are population 
centers, for example grid cells), and locations j (which are service points, 
e.g., clinics). In this way, Pj is the weighted sum of the population 
serviced by location j. The level of service at each service point is the 
capacity at the location divided by its estimated serviced population: 

Lj =
Sj

Pj
=

Sj
∑n

i=1Piwij  

where Sj is the service capacity at j (e.g., number of beds) and Lj is the 
level of service at j (for instance, beds per 1000 people). 

In the second step of the approach, the accessibility of population 
center i is calculated as the weighted sum of the level of service of all 
clinics reachable from there according to the weights: 

Ai =
∑J

j=1
Ljwji =

∑J

j=1

Sjwji
∑n

i=1Piwij 

Weights wij are usually obtained from a distance-decay function that 
depend on the cost of transportation cij between locations i and j, as 
follows: 

wij = f (cij)

There are numerous modifications of this basic framework that use 
binary, stepwise, or smooth functions for the distance-decay function (e. 
g., McGrail and Humphreys, 2009; Luo and Qi, 2009; Dai, 2010; Bauer 
and Groneberg, 2016). Other researchers have identified a certain bias 
in the calculations (termed inflation) that results from allocating the 
same population to multiple clinics, and then allocating the level of 
service of each clinic to multiple population centers (see Wan et al., 
2012; Delamater, 2013), in built-in double counting effects that seldom 
cancel each other. A detailed discussion of this issue can be found in 
Páez et al. (2019), where the BFCA approach is introduced. 

The BFCA differs from previous indicators by simultaneously cor-
recting for inflation of demand and service levels. To do this, this 
approach replaces the weights in the calculations above, and uses 
instead a set of suitably normalized weights as follows: 

wi
ij =

wij
∑J

j=1wij  

and: 

wj
ij =

wij
∑n

i=1wij 

These weights satisfy the following properties: 

∑J

j=1
wi

ij = 1  

and: 

∑n

i=1
wj

ij = 1 

So that accessibility is calculated as: 

Ai =
∑J

j=1

Sjwj
ij

∑n
i=1Piwi

ij 

The intuition of the normalized weights is that population is allo-
cated proportionally to service points, and the sum of the allocated 

Table 2 
Number of adult ICU beds and mechanical ventilators in SUS per 10 thousand 
people in Brazil’s 20 greatest municipalities, 2020.  

Municipality ICU 
beds* 

Population (in 
thousands)** 

ICU beds per 10 thousand 
people 

São Gonçalo 149 760.5 2 
Goiânia 596 2965.9 2 
Belo Horizonte 792 4348.2 1.8 
Rio de Janeiro 1419 8259.4 1.7 
Porto Alegre 327 2602.8 1.3 
Salvador 565 4363.9 1.3 
São Paulo 1211 13852.3 0.9 
Campo Grande 102 1180.3 0.9 
Curitiba 211 2550.1 0.8 
Campinas 141 1701.9 0.8 
Guarulhos 93 1197.7 0.8 
Recife 373 4477 0.8 
São Luís 159 1886.4 0.8 
Belém 139 2111 0.7 
Manaus 170 2419.3 0.7 
Natal 123 1784.9 0.7 
Fortaleza 241 4003 0.6 
Brasília 181 3860.3 0.5 
Maceió 82 1893.2 0.4 
Duque de 

Caxias 
30 946.3 0.3 

Total 7104 67,164.4 1.06 

Source: authors’ own elaboration using data from Pereira et al. (2019), 
healthcare facilities data from CNES on February 2020, and population pro-
jections for 2020 from Freire et al. (2020). Obs.: * Number of ICU beds with 
mechanical ventilators in the public healthcare system. ** City population cor-
rected by the adjustment factor from Appendix Table A. 

3 The following types of healthcare units for first-response services and triage 
were considered: community health posts, basic health centers/units, poly-
clinics, general hospitals, specialized hospitals, mixed care units, general first 
aid posts, specialized first aid posts, and units for indigenous health response. 
As established by the Management Protocol for the New Coronavirus (Protocolo 
de Manejo para o Novo Coronavirus), “All patients who seek health services 
(Primary Health Response Units, Emergency Care Units, First Aid Posts, Mobile 
Pre-Hospital Service Units and Hospitals), must be submitted to clinical triage 
that includes early recognition of suspected cases, and if necessary, immediate 
referral of the patient to an area separated from those that contain respiratory 
and hand hygiene supplies” (free translation from Ministério da Saúde, 2020b). 

R.H.M. Pereira et al.                                                                                                                                                                                                                           



Social Science & Medicine 273 (2021) 113773

7

population is the total of the population. Likewise, the level of service is 
allocated proportionally to population centers, and the total sum of the 
level of service is the total level of service. In this way, double counting 
is eliminated at both stages, and the resulting indicator can be inter-
preted as an exact provider-to-population ratio (PPR). 

4.3. Practical issues for implementation 

Accessibility measures can be implemented using positive and 
normative approaches (Páez et al., 2012). Positive approaches consider 
the willingness of people to travel, whereas the latter captures a norm to 
be satisfied. In practice, the difference between positive and normative 
accessibility is the definition of the impedance function. In this study we 

consider both approaches. In the first part of the empirical analysis, we 
consider a normative implementation with a threshold of 30 min travel 
time based on research by McGrail et al. (2015). This threshold was 
chosen with a policy assumption that tries to minimize the distance that 
patients travel as a way to reduce contagion risks for others. In the 
second part of the analysis, we calculated accessibility considering as a 
threshold the maximum distance to the nearest hospital in each city. 
This threshold can be interpreted as the minimum necessary distance 
that guarantees that every person can reach at least one hospital and is 
normatively in line with the recommendation from the Ministry of 
Health (Brasil, 2020b) that suspected cases should visit their nearest 
hospital. 

Because this treatment of patients with COVID-19 often requires 

Fig. 3. Spatial distribution of hospitals with adult ICU beds and ventilators (1), the level of access to these services considering competition effects (2), and pop-
ulation distribution (3) in São Paulo (A) and Manaus (B), 2020. 
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Fig. 4. Spatial distribution of hospitals with adult ICU beds and ventilators (Panel 1), the level of access to these services considering competition effects (Panel 2) 
and population distribution (Panel 3) in Rio de Janeiro (A) and Fortaleza (B), 2020. 
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combined availability of ICU beds and mechanical ventilators, we only 
considered the joint availability of bed/ventilator. Thus, in the case of a 
hospital with 30 adult ICU beds but only 20 ventilators, we considered 
only 20 beds (one ventilator per bed). As a rule, however, there are more 
ventilators than ICU beds. For ICU beds in field hospitals, we assumed 
there was at least one ventilator available per bed. 

A limitation of this method is that it considered the ICU beds and 
ventilators that are in use, but these might not be the appropriate models 
for prolonged use as in COVID-19 cases. Another limitation is that we 
analyzed the public healthcare system’s attendance capacity focusing 
only on the number of adult ICU beds and ventilators. Other studies 
should also consider restrictions imposed by the availability of health-
care professionals to staff ICUs when the data is available. 

Another limitation of the method is that our analyses are restricted to 
the population and supply of services within cities. This generates two 
effects. The first is the tendency to underestimate the level of access to 
services by people who live near the border between two cities since 
they could possibly access hospitals in the neighboring city. The second 
effect is the underestimation of the demand from people from other 
neighboring cities who can seek admission to hospitals in the 20 cities 
analyzed. To minimize this second problem, we applied an adjustment 
factor for hospital admissions by non-residents (Brasil, 2005) according 
to the size of the population living in each hexagon, as suggested by Paez 

et al. (2019). A factor of 1.5, for example, would simulate that the size of 
the demand for admission to each hospital is 50% higher due to patients 
living in other cities. In a recent study, Servo et al. (2019) demonstrated 
that in 2015 on average 30% of the hospitalizations for medium 
complexity treatments in cities were from patients living in other cities. 
Based on data from the SUS Hospital Information System for 2019, we 
calculated the value of the correction factors for each city (see Appendix 
Table A). 

5. Results 

5.1. Access to health services 

We find that the 20 largest Brazilian cities comprise nearly 228 
thousand people above 50 years of age who are in low income brackets, 
and reside more than 30 min away (by walking) from a health unit that 
provides triage and referral services to patients with suspected infection 
(Table 1, column A). These health units, particularly primary health and 
emergency care units play a fundamental role as entry points to the 
system. As such, the spatial capillarity and longitudinality of these units 
are very important to facilitate the population’s access to health services 
and to avoid hazardous agglomeration of patients with suspected 
coronavirus infection. 

Fig. 5. Income and racial inequalities in access to ICU beds and ventilators considering competition effects. Brazil’s 20 largest cities, 2020.  
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The highest proportion of people in this situation were found in the 
cities of Rio de Janeiro, São Paulo, Brasília, Duque de Caxias, Campinas, 
and Goiânia. These six cities concentrate more than 60% of the 
vulnerable population who live more than 30 min on foot from a health 
service point. However, analysis of the proportion in each city reveals 
that Duque de Caxias, São Luís, Brasília, Maceió, and Campinas stand 
out with more than 10% of their vulnerable population living more than 
30 min from a health facility qualified for this triage. 

Furthermore, Table 1 also shows there are some 1.6 million vulner-
able people who live farther than 5 km from a health unit able to admit 
patients in serious condition due to COVID-19. This total represents 41% 
of the vulnerable population in the 20 cities. These numbers vary widely 
across cities due to the different patterns of urban occupation and the 
spatial distribution of healthcare facilities in each area. Cities like Rio de 
Janeiro, São Paulo, Brasília, and Curitiba stand out for having more than 
100,000 inhabitants in potentially vulnerable conditions and with poor 
access to hospitals with ICU beds and mechanical ventilators. It is also 
noteworthy that half of the 20 cities have more than 50% of their 
vulnerable population living farther than 5 km from inpatient facilities. 

As crucial as estimating how many vulnerable people have poor 
access to healthcare is mapping where this population lives. For four 
selected cities, Figs. 1 and 2 present the size and residential locations of 
the low-income population older than 50 years who (1) cannot access 
any primary healthcare establishment in less than 30 min by walking; 
and (2) live more than 5 km from the nearest hospital with at least one 
ICU bed and one ventilator. For the sake of brevity, we only present the 
maps for Sao Paulo, Rio de Janeiro, Fortaleza, and Manaus, the four 
cities most affected by COVID-19 in Brazil. As of the end of June, these 
four cities alone concentrated 18% of COVID-19 confirmed cases and 
32% of deaths in the country. These maps show that vulnerable pop-
ulations with poor access to health services are mostly located in urban 
peripheries, indicating those areas which would be good candidates for 
local policy interventions, such as setting up field hospitals or engaging 
pre-hospital mobile units (such as the Urgent Mobile Response Service - 
SAMU) or community health agents. 

5.2. Health system capacity 

A primary indicator to measure a health system’s capacity is the 
number of hospital beds per inhabitant in a given area. According to the 
parameters defined by the Brazilian Ministry of Health (Brasil, 2015) the 
minimum standard provision should be 1 adult ICU bed for each 10,000 
people.4 The average number of adult ICU beds with ventilators in 
hospitals in the public health system in the 20 largest Brazilian cities is 
1.06 per 10 thousand people (Table 2). This value is only slightly higher 
than the minimum recommended by the Ministry of Health under 
normal circumstances. The value of 1.06 can be considered insufficient 
in an epidemic situation, posing a risk of overload in scenarios for 
COVID-19 contagion indicated in previous studies (Castro et al., 2020; 
Noronha et al., 2020). The ratio of beds per population also varies 
significantly across cities (Table 2). Thirteen out of the 20 cities 
analyzed are below the recommended level of service and by July 1st 
most of these cities had ICU bed occupancy rates above 80% (Folha de S. 
Paulo, 2020). 

The most significant variations in the availability of health services, 
however, occur within cities. In Figs. 3 and 4 below we present a set of 
maps that provide a detailed view of the spatial distribution of hospitals 
with adult ICU beds and ventilators and the level of access to these 
services considering competition effects. The maps on Panel 1 show the 
spatial distribution of hospitals. Each hospital is represented by a circle 
whose size reflects the ratio between the number of beds/ventilators of 
that hospital and the population of its catchment area. Although the 
situations vary across cities, as a rule, downtown areas generally 

concentrate the greatest number of hospitals, especially the ones with 
more beds per inhabitant. This is the case, for example, in Fortaleza, 
Manaus, and Rio de Janeiro. The availability of ICU beds and ventilators 
to serve patients with severe COVID-19 tends to be considerably lower in 
the peripheral regions of these cities. In these regions, it is common to 
observe ratios of ICU beds per 10 thousand inhabitants between 0.5 and 
1.0. These ratios can be considered critical against a backdrop of an 
epidemic with growing numbers of patients needing hospitalization for 
respiratory complications. The example of cities like Rio de Janeiro also 
illustrates how setting up field hospitals in farther areas can increase the 
capillarity of health services in epidemic situations like the COVID-19 
outbreak. 

Meanwhile, the maps on Panel 2 show the number of ICU beds and 
ventilators accessible from each location, considering at the same time 
the level of service availability and the potential overlap of demand and 
supply competition effects estimated with the balanced float catchment 
area (BFCA). Compared to the results in Panel 1, these maps present in 
more detail how the geographic access to COVID-19 healthcare is 
particularly higher in central urban areas. This is perhaps more clearly 
seen in the city of São Paulo, where accessibility to equipped beds 
steadily declines from the central parts of the city to the periphery. 
Considering the average population per tile of the hexagonal grid in São 
Paulo, this indicates that in the regions with the highest accessibility, 
there are approximately 0.000012 beds per 10,000 people serving on 
average 1240 persons. This translates into 9.76e-6 beds per person, 
compared to 8.74e-5 beds per person average for São Paulo. This shows 
how the regional PPR can be misleading, by assuming that every person 
in the region has equal access to medical facilities. Analysis using the 
BFCA indicator also illustrates how living close to a hospital does not 
necessarily translate into high levels of accessibility once congestion 
effects are taken into account. This is the case in cities like Fortaleza, Rio 
de Janeiro, and São Paulo, where some peripheral neighborhoods, 
despite being close to a hospital, face poor access to health services due 
to the limited capacity of the healthcare system to support the expected 
demand of much larger areas. 

Finally, the maps on Panel 3 present bivariate choropleth maps with 
the combined spatial distribution of population densities and accessi-
bility levels by automobile using city-specific thresholds so that every 
person could reach at least one hospital. This panel complements pre-
vious figures by highlighting those areas with large populations under-
served by healthcare services (bright pink = larger population and lower 
accessibility) and those areas which face higher service levels for a 
comparable lower demand (bright green = smaller population but high 
accessibility). It is possible to see that even in those places with low 
accessibility, there are pockets where the situation is made worse by 
afflicting larger populations. The figures in Panel 3 are useful to 
differentiate low-accessibility areas with large and small population 
numbers, which can provide actionable information for policy-makers to 
choose which low-accessibility areas should be prioritized in emergency 
situations. 

Obs. Gray circles represent field hospitals or temporarily reactivated 
facilities. 

The geographic access to COVID-19 healthcare in Brazil presents not 
only spatial but also marked social inequalities. Fig. 5 shows the 
magnitude of the racial and income inequalities in access to ICU beds 
and ventilators considering competition effects. One of the most extreme 
cases is the capital of the country Brasília, where the number of ICU beds 
with ventilators accessible by the wealthiest population is more than six 
times larger than for the poor. While racial inequalities are relatively 
lower compared to inequalities by income, they are still present in most 
cities. This is particularly true in Brasília, São Paulo, and Belo Horizonte, 
where black communities can only access half as many health resources 
as the white population. 

In summary, our findings point to a worrying pattern. Across Brazil’s 
20 largest cities, we find substantially lower healthcare system capacity 
in peripheral urban areas and among low-income and black 4 Edict 1101 of June 12, 2002, and Resolution 7 of February 24, 2010. 
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communities. In particular, urban peripheries with high population 
density coupled with low incomes and poor sanitation services create a 
worrying scenario with strong potential for propagation of the COVID- 
19 precisely among communities that are most vulnerable to the dis-
ease and with the lowest access to healthcare. Combined, the analyses 
presented provide valuable information that can help local authorities 
map the areas which should receive more immediate response from local 
healthcare community agents and perhaps the construction of new field 
hospitals to address short-term needs induced by the COVID-19 
pandemic. 

6. Final remarks 

This paper examined the geographical access to COVID-19 health-
care in the 20 largest Brazilian cities. The study looked at access to both 
health facilities with capacity for triage and referral of patients with 
suspected COVID-19 to hospitals, as well as those able to hospitalize 
patients with the support of ICU beds and mechanical ventilators. We 
mapped approximately 228 thousand vulnerable people (low-income 
and above 50 years old) living more than 30 min walking from primary 
and emergency care units. We also found some 1.6 million vulnerable 
people living farther than 5 km from a hospital with capacity for ICU 
admission. Because patients suspected of COVID-19 might face mobility 
constraints due to grave conditions, it becomes crucial to develop stra-
tegies to provide transport and health services to these people. This is 
particularly true of low-income communities on the outskirts of cities, 
where there are fewer mobility options and where health services are 
scarce. 

The study also analyzed the support capacity of the public health 
system in Brazil’s largest cities, looking at the number of ICU beds/ 
ventilators per person in the catchment area of each hospital. We find 
that thirteen out of the 20 cities analyzed have fewer ICU beds/venti-
lators than the minimum level recommended by national authorities. 
This number could be considered insufficient to cope with the growth of 
demand for hospital admissions given the rapid propagation of COVID- 
19 in Brazil. Accessibility analysis using the new balanced float catch-
ment area (BFCA) shows this scenario is particularly aggravated when 
accounting for competition effects on both supply and demand for 
health services. The BFCA estimates show large spatial inequalities with 
substantially lower access to health services in low-income and black 
communities in urban peripheries, which could more easily be over-
whelmed by the near-future hospitalization demands. 

As a whole, the study illustrates how transport accessibility analyses 
can provide actionable information to help local governments improve 
access to healthcare during pandemic outbreaks. Our analyses put 
disadvantaged communities with poor access to health services on the 
map, indicating in which neighborhoods local authorities could priori-
tize building makeshift hospitals or engage mobile units and health 
community agents. These analyses may also help identify which hospi-
tals might face greater admission overload and hence would need sup-
plementary funding to expand capacity. The application of the novel 
BFCA in this paper illustrates how considering competition effects in 
access to healthcare can have important but often overlooked implica-
tions for policy planning. 

Future research could potentially indicate the areas where the con-
struction of makeshift hospitals would be more effective to improve 
healthcare accessibility, particularly for vulnerable groups. New studies 
are also necessary to examine the potential role of community health 
agents in improving healthcare accessibility in more remote areas. More 
research is still needed to investigate how the availability of health 
professionals could hinder the availability of services to the population. 
Future studies could also benefit from the work developed by Barrozo 
et al. (2020b) to further examine the relationship between socioeco-
nomic and health conditions, including those associated with COVID-19. 
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realizadas. Associação Nacional das Empresas de Transportes Urbanos - NTU, 
Brasilia.  

Paez, A., 2020. Using google community mobility reports to investigate the incidence of 
COVID-19 in the United States. Transp. Findings 12976. https://doi.org/10.32866/ 
001c.12976. 

Paez, A., Lopez, F. A., Menezes, T., … Pitta, M. G. da R. (n.d.). A spatio-temporal analysis 
of the environmental correlates of COVID-19 incidence in Spain. Geogr. Anal., n/a 
(n/a). doi:10.1111/gean.12241. 
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