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A B S T R A C T   

Ride-hailing services can expand access to opportunities in urban areas, but out-of-pocket costs may limit its 
benefits for low-income individuals. This paper examines how ride-hailing shapes spatial and socioeconomic 
differences in access to opportunities while accounting for the trade-off between travel time and monetary costs. 
Using one year of aggregate Uber trip data for Rio de Janeiro in 2019 and a new multi-objective routing algo-
rithm, we analyze the potential for ride-hailing services to improve employment accessibility when used as a 
standalone transportation mode and in conjunction with transit as a first-mile connection. We find that, 
compared to transit, standalone ride-hailing can significantly expand accessibility as a standalone mode for short 
trips, and as a first-mile feeder to transit in trips longer than 30 min. However, the accessibility benefits of ride- 
hailing accrue mostly to high-income groups due to affordability barriers. These findings suggest that policy 
efforts to integrate rideshare with transit are likely not going to benefit low-income communities without some 
form of subsidized fare discounts to alleviate affordability barriers. The paper also highlights how accounting for 
trade-offs between travel-time and monetary costs can importantly influence the results of transportation 
accessibility and equity studies.   

1. Introduction 

The emergence of ride-hailing services has been one of the most 
disruptive transportation innovations in recent decades (Chan & Sha-
heen, 2012; Dudley et al., 2017; Tirachini, 2020). Transportation 
network companies (TNCs), such as Uber and DiDi, can help people 
overcome transit network gaps and improve urban accessibility without 
the costs of car ownership (Brown et al., 2022; Jin et al., 2018; Young & 
Farber, 2019). Nonetheless, even though ride-hailing services are 
generally faster and more convenient than transit options, they are also 
more expensive for single riders and out-of-pocket costs are one of the 
biggest barriers to ride-hail for low-income people (Brown et al., 2022). 
This explains in part the growing number of studies trying to understand 
the circumstances under which ride-hailing could compete and com-
plement public transit (Cats et al., 2022; Hall et al., 2018; Li et al., 2021; 
Yan et al., 2019; Young et al., 2020). 

Various studies have shown how ride-hailing services can effectively 
expand mobility options (Alemi et al., 2018; Ceccato & Diana, 2021; 
Onono et al., 2019; Tirachini & del Río, 2019). However, few studies 
have examined the extent to which ride-hailing services improve access 

to opportunities, particularly when used in conjunction with transit, and 
how such accessibility benefits can vary across socioeconomic groups. 
Moreover, no studies have compared ride-hailing and transit accessi-
bility considering the trade-off between travel time and monetary costs. 
Previous research on accessibility by ride-hailing has focused on either 
travel time (Barkley et al., 2018; Haddad et al., 2019) or out-of-pocket 
costs (Souza et al., 2021). Two exceptions are the works of Abdelwa-
hab et al. (2021) and Cats et al. (2022). Nonetheless, these studies use 
generalized travel cost functions that combine time and monetary costs 
into a single cost value, which ignores the potential trade-offs between 
travel time and monetary costs (see Section 2). Being able to examine 
these trade-offs is particularly important for those investigating the 
potential competition and complementarity between ride-hailing and 
public transit because of how these transport modes provide markedly 
different levels of accessibility, though at significantly different costs 
(Schwieterman, 2019). 

The aim of this paper is twofold. First, it examines how ride-hailing 
services can shape spatial and socioeconomic differences in access to 
opportunities while accounting for the trade-off between travel time and 
monetary costs. Second, the paper investigates the extent to which urban 
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accessibility can be expanded by ride-hailing when these services are 
used either as a standalone transport mode or when used in conjunction 
with transit as a first-mile feeder to mass transit. The paper draws on 
material from one year of aggregate Uber trip data for Rio de Janeiro 
(Brazil) in 2019. Combining this data with multimodal transport rout-
ing, we calculate employment accessibility using cumulative opportu-
nity measures that simultaneously account for both travel time and 
monetary costs. This is done using a new method recently developed by 
Conway and Stewart (2019) and implemented in the R package r5r 
(Pereira et al., 2021), which provides a multiobjective optimization 
routing method to account for cost constraints in public transit acces-
sibility metrics. This work also combines custom travel matrices by Uber 
and transit designed to accommodate transfer times between these 
modes, which are used to calculate accessibility levels that result from 
the combined use of transit and Uber as a first-mile feeder. 

This study advances the literature on transportation accessibility and 
equity by examining the trade-off between travel time and out-of-pocket 
monetary costs in accessibility. Our case study advances the state-of-the- 
practice in transportation equity analysis by showing how explicitly 
considering affordability of different modes affects transport accessi-
bility and inequality estimates. Additionally, it expands upon previous 
research by analyzing the potential for ride-hailing services to improve 
accessibility when used in conjunction with transit as a first-mile feeder 
service. This is particularly relevant given the increasing number of 
transit agencies partnering with TNCs to improve accessibility for 
transportation-disadvantaged communities in low-density areas (Brown 
et al., 2021; Curtis et al., 2019; Zuniga-Garcia et al., 2022). Furthermore, 
this paper contributes to the growing empirical evidence on how ride- 
hailing services may shape transportation equity and accessibility con-
ditions, providing new evidence in the context of the Global South. 

The notion of transportation equity with regards to transport 
accessibility can be framed both in terms of egalitarian or sufficientarian 
perspectives, which focus respectively on issues of relative inequalities 
in access to opportunities, and on whether people have enough (abso-
lute) level of access to opportunities (Lucas et al., 2016; Pereira et al., 
2017). In this paper, we focus particularly on inequality issues, and take 
the predominant stance in the literature that a transport system is 
considered more equitable if it contributes to reducing inequalities of 
opportunities by prioritizing the accessibility of disadvantaged groups 
(Pereira et al., 2017; Zhang & Zhao, 2021). 

The remainder of the paper is organized as follows. Section 2 pre-
sents a literature review on ride-hailing services and urban accessibility. 
Section 3 presents the study area analyzed in the paper. The data and 
methods used to calculate travel times and monetary costs and to esti-
mate employment accessibility are presented in Sections 4 and 5. Sec-
tion 6 presents the results, and Section 7 presents the conclusion of the 
study with reflections for future research and policy recommendations. 

2. Literature review 

Ride-hailing services are a relatively recent innovation in urban 
mobility, but they have been capturing a lot of attention from re-
searchers and policy makers (Shaheen & Cohen, 2019). Several studies 
have analyzed the implications ride-hailing services can have for urban 
mobility systems in terms of public transit ridership (Diab et al., 2020; 
Erhardt et al., 2022; Lavieri & Bhat, 2019; Rayle et al., 2016) and 
transport externalities such as road congestion (Diao et al., 2021; 
Erhardt et al., 2019; Tirachini & Gomez-Lobo, 2020), air pollution 
(Barnes et al., 2020; Sui et al., 2019; Yu et al., 2017) and traffic crashes 
(Anderson & Davis, 2021; Barreto et al., 2021; Barrios et al., 2019; 
Conner et al., 2021; Kirk et al., 2020). 

There is also a growing literature that examines how transportation 
network companies (TNCs), such as Uber, DiDi and Cabify, could have 
ambiguous effects as a complement and substitute to public transit (Hall 
et al., 2018; Yan et al., 2019; Young et al., 2020). While ride-hailing 
services can compete as a more convenient though more expensive 

transport alternative, these services can also increase the reach and 
flexibility of public transport by providing first mile-last mile connec-
tions (Cats et al., 2022; Shaheen & Chan, 2016; Wang et al., 2012). A few 
studies in this literature try to assess this potential complementarity and 
competition by looking at the overlap between the origins and desti-
nations of trips conducted by ride-hailing versus transit (Jin et al., 2019; 
Kong et al., 2020; Liao, 2021). Other studies using travel surveys have 
shown that TNCs are increasingly used as first-last mile alternatives to 
integrate with transit (Bedoya-Maya et al., 2022; Brown et al., 2021; 
Sunitiyoso et al., 2022). Along these lines, there is also growing research 
on ride-hailing and transportation equity, looking at whether TNCs can 
effectively improve the mobility conditions of low-income and disad-
vantaged communities (Brown et al., 2022; Jiao & Wang, 2020; Jin 
et al., 2019) or whether ride-hailing services end up exacerbating the 
gap in the urban mobility and accessibility conditions of different so-
cioeconomic groups (Abdelwahab et al., 2021; Barajas & Brown, 2021; 
Brown et al., 2021). There is also a growing literature looking at gender 
issues, and which examines the extent to which ride-hailing services 
benefit women's access given gendered particularities in travel behavior 
and safety concerns (Qiao et al., 2023; Sabogal-Cardona et al., 2021; 
Young & Farber, 2021). 

Previous research has analyzed the wait times of passengers from 
TNCs as a surrogate to access to ride-hailing services (Hughes & 
MacKenzie, 2016; Insardi et al., 2019; Shokoohyar et al., 2020; Wang & 
Mu, 2018; Young & Farber, 2020). However, these studies provide only 
a limited account of accessibility, because they overlook travel time and 
land use patterns. By doing so, these studies focus on access to ride- 
hailing itself, and not on the level of access to opportunities that can 
be achieved by using these services. 

Only a few studies have examined the extent to which ride-hailing 
can improve people's access to opportunities. One of these studies is 
the work conducted by Souza et al. (2021), who analyze four districts of 
Rio de Janeiro (Brazil). The authors compare the number of jobs that can 
be accessed by public transport and Uber given different monetary cost 
limits and number of passengers traveling together. The authors find 
that, overall, ride-hailing services provide substantially higher 
employment accessibility than transit, but they only become financially 
competitive once trip costs are shared between two or more passengers. 
Despite the contributions of the paper in analyzing transportation equity 
with ride-hailing, this study ignores how travel times are substantially 
different in the shaping of accessibility by ride-hailing and transit. 

The work of Cats et al. (2022) analyzes ridehailing's dual role as a 
complement and substitute to public transit by comparing accessibility 
levels by both transport modes. Using Uber trip data in six cities in the 
United States and Europe, they found that Uber is used both in 
competing and complementary circumstances, even though the impact 
of ride-hailing on overall service accessibility varies greatly within and 
between cities. Despite a thorough comparison between accessibility by 
ride-hailing and transit, Cats et al. (2022) do not analyze how ride- 
hailing could expand transit accessibility when used as a first-mile ser-
vice for transit. Nonetheless, this extended analysis was done by 
Abdelwahab et al. (2021), who used Uber trip data in Toronto to 
examine the extent to which ride-hailing helps advance transportation 
equity in terms of employment accessibility. The authors have found 
that, overall, ride-hailing outperforms transit in providing accessibility 
but integrating ride-hailing with public transit does little to improve 
access to jobs, particularly in deprived neighborhoods. 

There is an important methodological characteristic in common in 
the works of Cats et al. (2022) and Abdelwahab et al. (2021). Both 
studies consider only the travel time of the fastest transit route between 
each origin-destination pair and then calculate the fare for those jour-
neys sequentially, to later estimate accessibility using a generalized 
travel cost function that combines time and money into a single cost 
value. This is also how generalized travel costs have been previously 
used in several studies in the accessibility literature (Bocarejo & Oviedo, 
2012; El-Geneidy et al., 2016; Geurs et al., 2010). However, this 
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approach can be problematic for studies that try to account for out-of- 
pocket costs when analyzing accessibility by transit and ride-hailing 
for at least two reasons. 

First, the generalized travel cost approach does not account for trade- 
offs between travel time and monetary costs. Oftentimes, multiple 
transit paths exist between a given origin-destination pair, and some 
path alternatives may involve longer travel times at cheaper costs, while 
others may be faster at a higher cost (for example with premium express 
services or trips that involve transfers between modes). There is no clear 
answer as to which path should be considered, given the variety of 
circumstances under which individuals have different preferences based 
on their monetary and time constraints. In fact, considering only one of 
the alternatives poses important implications for transportation equity 
analyses. On one hand, considering only the fastest paths may result in 
prohibitive costs for individuals with stricter financial constraints, as 
these paths may be more expensive due to transfers or faster modes. On 
the other hand, considering a single cheaper path may bias accessibility 
estimates by ignoring more efficient travel alternatives. In both cases, 
accessibility estimates may be biased and over or underestimated for 
individuals who are more money- or time-constrained in their travel 
choices, which often includes poorer and wealthier groups, respectively. 
Therefore, ignoring the trade-offs between travel time and financial 
costs can be particularly problematic for studies concerned with equity 
issues. 

Secondly, calculating accessibility based on a generalized travel cost 
function poses several challenges. One issue is the conversion of money 
to time (or vice versa) by assigning a monetary value to time. This 
process involves several ad-hoc methodological decisions that may not 
be appropriate for studies that are concerned with transportation equity 
(Martens & Di Ciommo, 2017). Assigning a value of time (VOT) that 
varies according to people's income levels, for example, implies that the 
time of wealthier individuals is worth more than that of poorer citizens, 
which can perpetuate historical privilege (Börjesson & Eliasson, 2019; 
Goodwin, 1974). An alternative approach is to use a fixed VOT, which 
partially addresses this issue. However, it is not clear what value should 
be used, leading to ad-hoc decisions that compromise the comparability 
of different studies and may introduce other forms of bias. Additionally, 
converting an absolute amount of money to time with a fixed VOT is 
relatively straightforward, but doing so when looking at trip monetary 
cost as a share of one's total budget is much more complex and reduces 
the communicability and interpretability of results. 

To date, the majority of research on public transit accessibility has 
primarily focused on travel time due to the limitations of routing en-
gines, such as OpenTripPlanner and ArcGIS Network Analyst, which 
overlook the cost of transit fares. Only more recently, a new routing 
algorithm with a multiobjective optimization method has been devel-
oped that simultaneously accounts for time and cost constraints in 
public transit accessibility routing (Conway & Stewart, 2019). This 
method is utilized in the present study, allowing us to consider a large 
number of trip alternatives between the same origin-destination pair, 
ranging from faster though expensive itineraries to slower and cheaper 
routes. The method is further explained in the methods section. 

3. Study area 

Rio de Janeiro is the second largest city of Brazil and the fifth largest 
in Latin America with approximately 6.7 million inhabitants, making it 
one of the largest markets for ride-hailing in the continent. In Rio, ride- 
hailing services were used by approximately 6 % of the population that 
used some form of motorized transportation in 2018, twice as much as 
the national average of 3.1 % in all Brazilian cities (Warwar & Pereira, 
2022). While there is no available data with information on the purpose 
of ride-hailing trips in Rio de Janeiro, the Uber trip data set used in this 
paper (see Section 4) indicates that approximately 12 % of all Uber trips 
in Rio are taken during the morning peak period, when most trips are 
often work-related or linked to other regular activities. 

Ride-hailing users in the city make on average 8 trips per month, at 
an average cost of approximately 33 BRL per trip (Warwar & Pereira, 
2022). Ride-hailing users in Brazil are largely made up of women (over 
60 %), whites (approximately 48 %), as well as young (46 % are between 
15 and 35 years old) and wealthier individuals (ibid.). In Rio, in 
particular, 60 % of ride-hailing users are among the 40 % wealthiest in 
the city, while only 23 % of users are among the city's poorest 40 %. 

The spatial distributions of population, income and employment 
opportunities in Rio are presented in (Fig. 1). Wealthier population 
groups generally reside in the city's southern and southeastern regions 
(Fig. 1A), which are among the most densely populated areas in the city 
(Fig. 1B). High-income neighborhoods also tend to be relatively closer to 
the CBD, where the majority of jobs are located (Fig. 1C), thus facili-
tating the access to many urban facilities, which can be reached from 
such neighborhoods with a short ride. The poorest population, 
conversely, is mainly located in the northern and western regions of the 
city, which are less densely populated and very far from the city's main 
employment hubs, making ride-hailing more expensive and, thus, less 
affordable. 

The public transportation network in Rio de Janeiro also tends to 
serve the population unequally (Fig. 1D). The subway system, usually 
regarded as having better quality than the other transit alternatives, 
serves mainly the wealthiest areas in the southeastern region and the 
CBD, although it also stretches to some neighborhoods in the northern 
region of the city. Rail and BRT services, which are generally slower and 
more prone to service disruptions than the subway, provide trans-
portation over longer distances to the poorest areas located in the 
western- and northern-most ends of the city. The city also counts on a 
light rail system that runs mainly through the CBD and its vicinities, a 
ferry system that connects Rio to adjacent cities and a widespread 
municipal bus system that shares right-of-way with automobiles, thus 
leading to slower operational speeds. The buses are highly used by low- 
income people because they are less expensive than higher-order transit 
alternatives in Rio (more details in Section 4). The transit system's 
spatial configuration coupled with the co-distribution of people and jobs 
in the city leads to a scenario where those who depend on public 
transport the most, often face the longest commuting times. As per Rio's 
latest travel survey, 17 % of the transit trips conducted in the city were 
longer than 90 min, with an average commuting time of 57 min (Central, 
2016). 

4. Data 

We combine data from many different sources. Socioeconomic and 
population data come from the 2010 Population Census (IBGE, 2011), 
the latest census available in Brazil. Data on job locations come from the 
2019 RAIS, an administrative records product developed by the Ministry 
of Economy with information on all formal workers in the country.1 

These datasets are spatially aggregated to a hexagonal grid based on 
Uber's H3 index (Brodsky, 2018) at resolution 8, in which each cell has a 
radius of approximately 461 m and area of 0.74 Km2. Income data were 
adjusted based on the inflation from 2010 to 2019 using the official IPCA 
index (Broad Consumer Price Index, in Portuguese). 

The street network and the pedestrian infrastructure were extracted 
from OpenStreetMap in August 2019. To factor in street slopes when 

1 Although there is no recent data available on the location of informal jobs, 
these jobs are relatively more accessible with shorter commute times and dis-
tances than formal jobs (Motte-Baumvol et al., 2016). Moreover, the 2003 
household travel survey of Rio suggests a very similar spatial distribution of 
both types of jobs in Rio. These data indicates that the number of formal and 
informal jobs in the same zone is highly correlated (0.78 Pearson correlation 
statistically significant at 0.001), and that the number of formal jobs in one 
zone is moderately correlated with the number of informal jobs in neighboring 
zones (Global Bivariate Moran's I of 0.30 statistically significant at 0.001). 
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calculating walk travel times, we used elevation data with a spatial 
resolution of 30 m, produced by the Shuttle Radar Topography Mission 
(Farr et al., 2007). Data describing the public transport system in 
October 2019 was provided by Fetranspor (Rio state's federation of 
passenger transport companies) and SuperVia (train system operator) in 
the General Transit Feed Specification (GTFS) format. Intermunicipal 
buses were removed from the GTFS because we could not find reliable 
information on the fare costs of these services. Since we only analyze 
accessibility within the municipality of Rio de Janeiro, and because 
intermunicipal buses are more expensive than the other available transit 
modes in the city, removing these services does not significantly affect 
our results and conclusions. 

Information of public transit fares were collected from Rio's transport 
authority website.2 The fare prices in effect in 2019 are summarized in 
Table 1. Single mode fares are not dramatically different, a subway 
ticket is only 25 % more expensive than a municipal bus ride, for 
example. Nonetheless, the lack of fare integration between specific 
modes significantly affects the affordability of multimodal trips. In 
particular, the lack of integration between the municipal buses and the 
subway and the small discount in transfers between the buses and the 
rail makes faster transit options more expensive for low-income trav-
elers who live far from rapid transit corridors and need to connect to 
them via buses. 

To estimate accessibility by ride-hailing, we used two data sets 
provided by Uber under a non-disclosure agreement. The first data set is 
a travel matrix table that covers 152 million Uber trips taken from March 

8th to December 20th, 2019. This data set consists of aggregate infor-
mation on the total number of trips between origin-destination pairs, as 
well as their average distance, speed and fare. The data is spatially 
aggregated over a hexagonal grid based on the H3 index using resolution 
8. This information is aggregated by day of the week (either weekdays or 
weekends) and by time blocks (morning peak 6 am - 9 am, day off-peak 
9 am - 5 pm, evening peak 5 pm - 8 pm or night off-peak 8 pm - 6 am). In 
order to calculate employment accessibility considering the conditions 
most transit users would face when commuting to work, we used Uber 
trip data collected on weekdays during the morning peak. Due to privacy 
concerns, the travel matrix data provided by Uber only includes infor-
mation for origin-destination pairs between which at least 10 trips were 
taken, after accounting for the aggregations listed above. To fill the data 
gaps between origins and destinations whose trip count was lower than 

Fig. 1. Spatial distribution of (A) deciles of income per capita, (B) population density, (C) job density, and (D) main transit routes in Rio de Janeiro. 
Obs. Transit network from 2019, while population and income data are from 2010 adjusted by inflation between 2010 and 2019. 

Table 1 
Transit fares in effect in Rio de Janeiro in 2019.  

Single mode Trip integration 

Mode Fare (BRLa) Integration Fare (BRL) 

Light-rail (VLT)  3.80 VLT + VLT  3.80 
Municipal bus  4.05 Municipal bus + municipal bus  4.05 
BRT  4.05 Municipal bus + VLT  4.05 
Rail  4.7 Municipal bus + BRT  4.05 
Subway  5.00 BRT + subway  7.10 
Ferry  6.30 Rail + subway  8.55   

Bus/BRT + rail (no discounts)  8.75   
Bus + subway (no discounts)  9.05  

a obs. As of October 2019, 1000 BRL (Brazilian reais) was worth approxi-
mately 241 USD. 

2 Available at https://www.cartaoriocard.com.br/rcc/institucional/tarifas. 
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10, we used Streetmap Premium, a commercial data set licensed by ESRI 
that brings historical traffic speed information based on GPS data 
collected multiple times of the day between the first quarters of 2018 
and 2020. 

The second data set provided by Uber presents information on the 
spatial distribution of pickup wait times (average, 25th, 50th and 75th 
percentiles) and number of pickups in Rio de Janeiro. The data set is 
spatially aggregated into hexagonal cells of different sizes (H3 index 
resolutions 8 and 9) to guarantee a minimum of 10 pickups per cell, for 
data fidelity and privacy concerns. This data set is also aggregated by 
day of the week and time blocks. 

5. Methods 

To investigate how ride-hailing services impact employment acces-
sibility both as a standalone transport mode and when used in 
conjunction with public transport, we followed a method composed of 
four steps. The first involved calculating travel time and monetary cost 
matrices by public transit. The second step was to calculate a similar 
matrix, but for ride-hailing services. Next, we combined the matrices 
from the previous steps to generate a third travel matrix, in which ride- 
hailing is used as a first-mile feeder to rapid transit stations and the rest 
of the trip is completed by transit services. Finally, in the fourth step we 
calculated accessibility levels using each one of these matrices and 
compared how the accessibility conditions of each scenario are distrib-
uted in space and across different socioeconomic groups. Each meth-
odological step is detailed below. In all of these steps, the spatial units of 
analysis are hexagonal cells from the H3 spatial grid (Brodsky, 2018) at 
resolution 8. 

Data processing and visualization were conducted in R. The code 
used in this paper is publicly available in a GitHub repository,3 and can 
be used as a reference when replicating the method of this paper in other 
contexts. 

5.1. Travel time and cost matrices by public transit 

Calculating the travel matrix between origins and destinations is a 
fundamental step to estimate accessibility levels in a given area. How-
ever, simultaneously accounting for both travel time and monetary cost 
in multimodal transport networks raises two challenges: the first is that 
the journey between a given origin-destination pair may be completed 
by multiple trip alternatives that may not be dominated by a supposedly 
“optimal” alternative. For example, the journey between one point to 
another might be completed with a fast but expensive subway trip (e.g. a 
15-minute trip that costs 10 BRL) OR with a longer though cheaper bus 
trip (e.g. a 40-minute trip that costs 5 BRL). The first challenge is which 
path alternative should be considered when calculating accessibility 
estimates. Passengers looking to save time may prefer the first alterna-
tive, while those looking to save money might opt for the second. If we 
had omitted the first trip alternative from the travel matrix, we would 
have mistakenly concluded that the destination was inaccessible for 
trips that cost less than 10 BRL when, in fact, this is not the case. 
Similarly, if the second alternative had been omitted, we would have 
wrongly assumed that the destination was inaccessible for journeys of 
less than 40 min, which is also untrue. To overcome this issue, one needs 
to consider the full set of trip alternatives when calculating accessibility 
estimates, requiring the routing engine to output these alternatives in 
the first place - which takes us to the second challenge. 

The second challenge is that performing multimodal transit routing 
with multiobjective optimization is a complex and computing-intensive 
task (Delling et al., 2015), specially because transit fares are often path- 
dependent; i.e. the fare cost of a ride can change depending on transfers 
that may have happened earlier in the journey, based on the fare system 

rules (Conway & Stewart, 2019; Lo et al., 2003). In a recent work, 
Conway and Stewart (2019) introduced a novel multiobjective optimi-
zation routing method to account for cost constraints in public transit 
accessibility metrics. Rather than finding only the fastest trip alternative 
regardless of monetary cost, the method is able to determine for a given 
origin-destination pair the multiple journey alternatives that are optimal 
in terms of both travel time and cost. As such, the method returns the set 
of alternative paths that form a frontier beyond which no journey is both 
faster and cheaper, ignoring trips that are simultaneously more expen-
sive and slower than any existing alternatives. In other words, the model 
finds the fastest trip for each possible combination of fares in the transit 
network. The routing model proposed by the authors was implemented 
in the R5 routing engine developed by Conveyal. 

In this paper, we used Conway & Stewart's (2019) routing model, 
available in R through the r5r package (Pereira et al., 2021), to generate 
the transit Pareto frontier for each OD pair. These frontiers include for 
each origin-destination pair both walk-only trips and trips in which 
transit is the main mode and the access to and egress from stations is 
done by foot. We have considered a walk speed of 3.6 km/h, a maximum 
walk time of 30 min to access/egress from transit stops and that a trip 
would consist of at most 4 transit legs. We have also considered trips 
departing every minute from 7 am to 8 am, and used the median travel 
time within this time window to calculate the accessibility levels. This 
strategy helps us mitigate the impact of statistical noises related to the 
variation of transit services availability within the morning peak (Con-
way et al., 2018). The travel time of a trip consists of the duration of a 
door-to-door journey, including the time it takes to walk from the origin 
to the departure stop, any wait and transfer time that occurs at stops, in- 
vehicle time and the time it takes to walk from the arrival stop to the 
destination. The monetary cost of a trip is the sum of the fares paid in 
each of its legs, including any fare integration discounts available when 
using the Riocard Mais smartcard as presented in Table 1. 

5.2. Travel time and cost matrices by ride-hailing 

A ride-hailing travel matrix covering all possible origin-destination 
pairs is essential to calculate the accessibility conditions that result 
from using ride-hailing services, both as a standalone mode and as a 
first-mile feeder to transit. However, the aggregate travel matrix data 
provided by Uber does not cover all possible combinations of origin- 
destination pairs. To fill in the data gaps, we used a multi-stage process. 

First, we calculated travel times and distances by automobile during 
the morning peak for all possible origin-destination pairs using the 
Streetmap Premium data and the Network Analyst plugin in ArcGIS Pro. 
Using the origin-destination pairs for which we had Uber trip data, we 
used a linear regression model to predict Uber travel times and distances 
based on automobile travel times and distances calculated with Network 
Analyst (R2 fit of 0.82 and 0.95, respectively). We used the coefficients 
derived from this model to estimate Uber's trips distances and travel 
times for pairs not covered in Uber's original data set. In a second stage, 
we used a similar regression to predict the cost of Uber trips based on 
travel time and distance (R2 fit of 0.96), and used these coefficients to 
estimate Uber's trip costs for pairs not covered in Uber's data set. We 
manually imputed the value of 5 BRL for the cases where the predicted 
trip cost was below 5 BRL, which was the minimum Uber fare in Rio de 
Janeiro in 2019. 

The travel times listed in Uber's data set and estimated through the 
linear regression include only in-vehicle time. To properly calculate the 
duration of a door-to-door journey we have to include the waiting time 
at the beginning of the trip (from the trip request to the vehicle arrival at 
the origin) to the total travel time. To do this, we summed the average 
waiting time at each origin, listed in the pickups data set provided by 
Uber, to the in-vehicle times between each origin-destination pair. This 
is a crucial step when estimating accessibility by ride-hailing, because 
areas under-supplied by drivers will have, on average, higher waiting 
times - thus potentially lower accessibility levels. For the sake of 3 Available at <<https://github.com/ipeaGIT/access_uber>>. 
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simplicity, the calculation of total travel time assumes there is no 
walking before boarding and after arrival. For hexagons with missing 
data on waiting time due to privacy reasons, we estimated their waiting 
time as the average waiting time of their neighbors. 

Finally, we have also included potential walk-only trips to the ride- 
hailing travel matrix, which is important to make sure we calculate 
accessibility levels correctly. For example, if we estimate accessibility 
with a monetary threshold that prevents any ride-hailing trips to be 
taken, but with a temporal threshold that allows some walking trips to 
be completed, we still have to consider the opportunities that can be 
accessed by foot from the origins, like one does when calculating transit 
accessibility. To do this, we have calculated a walk travel matrix with 
r5r and created a larger matrix between all combinations of origins and 
destinations which include both walking-only trips and Uber trips. The 
result is a Pareto frontier that considers walk-only and Uber-only trips. 

5.3. Travel time and cost matrices considering first-mile by ride-hailing 

The next step in our method was to calculate travel matrices 
considering a first-mile leg by ride-hailing and the remainder of the trip 
done by transit. To calculate the travel matrix by ride-hailing combined 
with transit we followed a four-step method. First, we calculated the 
time and cost by Uber from each origin to all hexagons containing rapid 
transit stations. We then merged this data set to the Pareto frontier 
composed of trips departing from each rapid transit station to all des-
tinations in the city. Here, we had to consider multiple departure times 
by transit to accommodate the transfer between ride-hailing and transit. 
For example, if the ride-hailing trip arrived at the subway station at 7:15 
am, we had to merge it with transit trips that departed from the same 
subway station after 7:15 am. 

Next, we calculated the total travel time and monetary cost of each 
trip by adding the travel times and monetary costs of the first-mile leg by 
ride-hailing and the transit leg. In cases where multiple trip alternatives 
existed between an origin-destination pair (e.g. one could go from point 
A to B either via transit stations X or Y), we kept only the alternatives 
that were simultaneously more efficient both in terms of travel time and 
out-of-pocket cost than the other options. In other words, we calculated 
a Pareto frontier composed of trips whose first-mile was traveled by ride- 
hailing and the rest by rapid transit. 

Finally, we merged both the Pareto frontier by ride-hailing combined 
with mass transit and the Pareto frontier by transit into a single larger 
frontier. As a result, the final Pareto frontier by ride-hailing combined 
with transit also includes transit trips whose access to stations was 
completed by foot, as long as these alternatives are not simultaneously 
slower and more expensive than the trips that include ride-hailing as a 
first-mile mode. 

5.4. Accessibility estimates 

To calculate accessibility levels, we used cumulative opportunity 
measures simultaneously considering travel time and monetary costs 
thresholds. Accessibility levels are then calculated in two distinct ways. 
First, we considered absolute monetary costs, as described in Eqs. (1), 
(1.1) and (1.2). 
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where Ai is the accessibility to jobs at origin i, Oj is the number of jobs at 
destination j, K is the total set of paths between origin i and destination j, 
tijk is the travel time of path k between origin i and destination j, T is the 
travel time threshold, f(tijk) is a binary function which returns values 
0 or 1 based on the travel time, cijk is the absolute monetary cost of path k 

between origin i and destination j, C is the absolute monetary cost 
threshold, and g(cijk) is a binary function which returns values 0 or 1 
based on the absolute monetary cost between the origin i and destination 
j. 

Because the burden of transportation costs can weigh differently for 
low- and high-income individuals, we also calculated accessibility 
considering monetary costs relative to the income per capita at the trip 
origin, as described in Eqs. (2), (2.1) and (2.2). This was done consid-
ering what would be the total monthly commute cost of an individual 
who uses the same path to commute to and from work every business 
day as a share of her/his monthly income, calculated as the income per 
capita before taxes of the trip origin hexagonal cell.4 Assuming 22 
business days in a month, the relative monthly cost of a trip is given by 
Eq. (2.2). 
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where h(bijk) is a binary function which returns values 0 or 1 based on 
the relative monthly cost, bijk is the relative monthly cost of a trip with 
path k between origin i and destination j in terms of one's monthly 
budget, B is the relative monthly cost threshold, and Ii is the monthly 
income per capita at origin i. 

The main advantages of cumulative opportunities measures are that 
they are easy to communicate, operationalize and interpret (Geurs & van 
Wee, 2004). However, they are often criticized for the need to set 
arbitrary cost thresholds, for ignoring any activities outside these limits 
and for the fact that all activities within the thresholds are considered 
equally reachable (Geurs & van Wee, 2004; Pereira, 2019). In order to 
mitigate this issue, we have used several combinations of thresholds 
selected from three different distributions: travel times cutoffs range 
from 1 to 90 min, every 1 min (1, 2, 3, …, 88, 89, 90); absolute monetary 
costs cutoffs range from 0 BRL to 24 BRL, every 0.05 BRL (BRL 0, 0.05, 
0.10, …, 23.90, 23.95, 24); relative monetary costs cutoffs range from 0 
% to 40 %, every 1 % (0 %, 1 %, 2 %, …, 38 %, 39 %, 40 %). 

For the sake of brevity, some of the results presented in the paper are 
based on selected thresholds. When focusing on a single time threshold, 
we have chosen to use a travel time of 60 min, which captures the results 
for moderately long trips and which is close to the average transit 
commute time in Rio (57 min) as per the last travel survey (Central, 
2016). The chosen absolute monetary costs threshold were 6 BRL, 12 
BRL, 18 BRL and 24 BRL. These cutoffs cover potential transit and ride- 
hailing trips with distinct lengths and costs, ranging from just above the 
minimum Uber fare in Rio (5 BRL) to moderately expensive trips (24 
BRL). Finally, the chosen relative monetary costs thresholds were 10 %, 
20 %, 30 % and 40 %, highlighting the results when considering 
different affordability thresholds. 

6. Results 

Considering the Pareto frontier of travel time and monetary cost for 
all origin-destination pairs in Rio allows us to calculate the average 

4 Calculating relative monthly costs as a percentage of the income per capita 
at a given region means that we have assumed that the income is evenly shared 
by every member of a household. In practice, however, the total income of a 
household is not evenly shared by its individuals, with some household mem-
bers requiring larger budgets to perform their activities, such as commuting. 
Data availability prevents us from calculating relative monthly costs consid-
ering household sizes and the number of economically active household 
members, which is why we opted to use the first method. 
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number of accessible jobs in the city given every possible combination of 
time and money thresholds. The result of this operation is a Pareto 
surface that represents the Pareto-optimal accessibility levels in the city - 
i.e. the number of accessible jobs calculated from the full set of trips that 
optimize for time and money combinations between each origin- 
destination pair (Fig. 2). 

The transit-only panel shows that average accessibility levels by 
transit are largely influenced by travel time once the passenger is able to 
spend enough to afford a bus ticket, around 4 BRL. Above this value, 
though, average accessibility levels are almost unaffected by more 
expensive transit tickets, even though they would allow one to ride 
faster modes, such as the rail and the subway. The exception to this can 
be seen around the 8 and 9 BRL marks, values with which the passengers 
can make transfers between transport modes, such as the municipal 
buses, the subway and the rail. The dominance of travel time cutoffs 
over monetary cost cutoffs on shaping the accessibility levels happens 
largely because Rio uses a flat fare system, in which prices remain 
constant regardless of distance/time traveled. The ride-hailing-only 
panel, on the other hand, shows that money exerts a stronger influ-
ence than time on the accessibility levels by this transport mode: the 
more expensive the ride-hailing trip, the farther one can go with it. It 
also shows that the accessibility benefits from ride-hailing-only trips 
become more salient at higher costs, above 15 BRL, whereas transit-only 
accessibility benefits are significant even when considering cheap 5 BRL 
trips. Finally, the figure also shows how using ride-hailing as a first mile 
connection to transit can significantly expand employment accessibility 
for transit users. The marginal accessibility gains for every additional 
BRL becomes much more pronounced than on the transit-only scenario, 
while accessibility levels at low monetary thresholds remain much 
higher than when considering ride-hailing-only trips. 

Although the Pareto surface can help us visualize the marginal im-
pacts of time and money on average accessibility levels, it makes it hard 
to analyze and compare accessibility conditions at particular monetary 
and temporal thresholds. Thus, to facilitate the interpretation and 
comparison of results, in the rest of the paper we report our findings 
using selected combinations of travel time and monetary thresholds. 

6.1. Spatial distribution of accessibility 

Fig. 3 shows the spatial distribution of employment accessibility by 
transit-only, ride-hailing-only, and ride-hailing combined with transit in 
up to 60 min of travel and multiple absolute monetary cost thresholds. 
This figure presents the spatial context for the analyses in this paper, 
highlighting how accessibility conditions are distributed across the city 
in each transport mode scenario. Markedly, the maps show a sharp East- 
West divide in all three scenarios, in which residents of the east side of 
the city have higher accessibility levels. This pattern can be explained by 
the large concentration of jobs and public transit services near the city 
center, located in the East side of Rio (see Fig. 1). 

The maps in Fig. 3 also show significant differences in the accessi-
bility levels provided by the different transport mode alternatives. The 
transit system provides relatively high accessibility levels along mass 
transit corridors that run from the CBD towards the west, even at low 
monetary costs when compared to ride-hailing. A 6 BRL budget is 
enough to pay for a transit trip by bus (with transfers allowed between 
buses and BRTs), by train or by subway, without any travel time limit. 
Compared to the ride-hailing as a standalone mode, the transit system 
configuration results in higher accessibility in areas farther from the 
CBD, showing that, in Rio, mass transit can serve population groups that 
live in the outskirts of the city at relatively low costs. Nonetheless, very 
little additional accessibility is gained by spending more money on 
transit alone when compared to the other alternatives. 

For ride-hailing services, on the other hand, accessibility is severely 
impacted by monetary costs restrictions. A 6 BRL budget only allows one 
to access the jobs in the immediate vicinity of the trip origin, resulting in 
very low accessibility levels on average. The number of accessible jobs 

consistently increases when taking more expensive trips into account. 
Nonetheless, the fact that accessibility is still largely concentrated near 
the city center, even at higher cost thresholds, indicates that ride-hailing 
as a standalone mode is very limited in providing access when costs are 
capped to 24 BRL. 

The Fig. 3 also shows how the spatial distribution of accessibility 
levels are affected when allowing passengers to combine ride-hailing 
and public transit. Ride-hailing can extend the reach of the transit sys-
tem far beyond the immediate vicinity of transit stations when used as 
an on-demand feeder service to the main transportation system. How-
ever, the accessibility gains that result from this combination are 
conditioned to higher monetary spending. Accessibility levels remain 
unchanged when allowing ride-hailing connections to public transport 
with a 6 BRL budget, but higher budgets result in accessibility gains in 
areas around the main transit corridors, from where ride-hailing services 
potentially substitute slow feeder transit trips to these corridors and long 
walks to the stations. 

6.2. Average accessibility levels by transport mode and income group 

The maps presented in Fig. 3 present a snapshot of the accessibility 
distribution when limiting trips to a given travel time threshold (60 
min). The arbitrary choice of thresholds, however, may severely affect 
the results and conclusions of accessibility analyses (Pereira, 2019), an 
issue that we try to mitigate by considering several different travel time 
cut-offs in our accessibility analyses. Fig. 4 shows how average acces-
sibility levels vary by transport mode with different combinations of 
absolute monetary cost and travel time thresholds. 

The figure reasserts that a 6 BRL budget is not enough to generate 
accessibility gains from ride-hailing, neither as a standalone mode nor as 
a first-mile mode to transit. When using it as a standalone transport 
mode, only very short distances can be traveled when spending that 
amount of money. At the same time, it is virtually impossible to use ride- 
hailing as a first-mile mode to transit spending only 6 BRL. This is 
because the minimum Uber fare in Rio (5 BRL) plus the cheapest rapid 
transit fare (4.05 BRL) entails trips that are more expensive than the 
selected threshold. As a result, the curve for ride-hailing only barely rises 
above 0 % average accessibility, while the transit-only and the ride- 
hailing combined with transit curves overlap each other (only the 
latter is shown in the figure). 

The advantage of ride-hailing becomes clearer with higher budgets 
(12 BRL onwards). In such cases, the ride-hailing as a standalone mode is 
able to provide much higher accessibility levels than the public transport 
system when considering relatively short trips, as a result of its higher 
speeds and lower access times. For example, considering a travel time 
threshold of 30 min and monetary cost thresholds of 18 and 24 BRL, the 
average accessibility by ride-hailing was 5 and 7 times higher than by 
transit, respectively. It is in these relatively short trips where ride- 
hailing has higher competitive advantage over transit. This advantage 
is limited to shorter trips due to cost constraints: the cost of ride-hailing 
trips, as opposed to the cost of transit trips in Rio, increases with its 
distance, making long trips more expensive than the monetary thresh-
olds considered in the analysis. Consequently, the accessibility that re-
sults from using ride-hailing as a standalone mode reaches a ceiling at 
relatively low temporal thresholds, whereas the transit accessibility 
keeps growing for long travel times. 

The advantages of combining ride-hailing with transit, on the other 
hand, become more evident as the time threshold increases. From the 30 
min mark onward, approximately, the accessibility curve of ride-hailing 
combined with transit curve (Fig. 4) detaches from, and remains 
consistently higher than, the transit-only curve. The accessibility bene-
fits of using ride-hailing as a first-mile feeder to transit also become more 
prominent when taking into account more expensive trips, as shown by 
the wider gap between the ride-hailing combined with transit and the 
transit-only curves. Considering a temporal threshold of 60 min, for 
example, the use of ride-hailing as a first-mile feeder to transit expands 
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the average employment accessibility of transit riders by approximately 
61 % and 75 % when taking into account trips of up to 18 BRL and 24 
BRL, respectively. 

The previous figures show how absolute monetary costs impact 

potential employment accessibility levels, but they do not account for 
the affordability of these costs according to travelers' incomes. The costs 
of daily trips, however, may impose significant financial burdens on 
commuters' budget, especially in a city like Rio, with high poverty levels: 

Fig. 2. Pareto-optimal accessibility with the average number of jobs accessible for each combination of travel time and monetary costs.  

Fig. 3. Spatial distribution of employment accessibility by different transport mode alternatives in under 60 min of total travel time and multiple monetary cost 
thresholds. Rio de Janeiro, 2019. 
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wealthy and poor passengers may pay the same to travel from one place 
to another, but the former spends a much smaller share of their budget 
than the latter. Therefore, using ride-hailing to commute to and from 
work, be it as a standalone mode or as a first-mile feeder to public 
transport, may not be viable for a large part of the population due to 
financial constraints. This makes it particularly important to assess the 

accessibility conditions considering monetary restrictions not only in 
absolute terms, but also as a share of one's income. 

Fig. 5 shows how the average accessibility levels in Rio de Janeiro 
vary by transport mode with different combinations of relative monthly 
cost and travel time thresholds. Because aggregate analyses may mask 
significant differences among population groups, the figure exhibits the 

Fig. 4. Average employment accessibility for different combinations of travel time and absolute monetary cost thresholds by transport mode. Rio de Janeiro, 2019.  

Fig. 5. Average employment accessibility for high- and low-income groups for different combinations of travel time and monetary costs relative to income by 
transport mode. Rio de Janeiro, 2019. 
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average accessibility levels of the wealthiest 10 % and the poorest 40 % 
of the population separately.5 The different scenarios of transport mode 
are indicated by the color of each curve, while the line type (whether 
solid or dashed) indicates the population group that each curve refers to. 

The accessibility levels of the wealthiest, shown in solid lines, follow 
a similar pattern to the average accessibility levels of the entire popu-
lation, but at much higher levels: with public transport trips of up to 90 
min and that may compromise up to 40 % of their income, they can 
access approximately 76 % of all jobs in the city. As hypothesized before, 
using ride-hailing services, both as a standalone and as a first-mile mode, 
yields much larger accessibility benefits to the wealthiest citizens than to 
the population as a whole. The wealthiest residents can ride more 
expensive and longer ride-hailing trips than the rest of the population 
when compromising the same share of their income on transport, thus 
significantly increasing their capability to access jobs within a given 
time threshold. 

The accessibility conditions of the poorest, shown in dashed lines, on 
the other hand, are remarkably different. Allowing transport expendi-
tures of up to 20 % of their monthly income barely results in any 
accessibility benefits, which only become more noticeable when 
considering trips that compromise 30 % of their income on commuting 
costs. Another important difference is that the ride-hailing combined 
with transit and the transit-only curves never separate from each other, 
resulting in only the latter being visible in the chart. Thus, using a ride- 
hailing service as a first-mile mode to transit does not yield any 
employment accessibility gains to low-income people. In fact, Rio's 
poorest residents can barely afford public transport itself, making a ride- 
hailing leg to reach transit prohibitively expensive. Using ride-hailing as 
a standalone mode is also impractical since Uber's base fare is more 
expensive than most transit fares and trip costs increase too quickly with 
trips distances. 

6.3. Accessibility gains from integrating ride-hailing and transit 

Now we turn to the potential accessibility gains from using ride- 
hailing as a first-mile leg to mass transit and how such benefits are 
distributed both in space and across the population. Fig. 6 shows how 
many more jobs one could reach in 60 min from different areas of Rio by 
combining ride-hailing and transit compared to riding transit-only trips. 

Considering absolute monetary costs (Fig. 6A), significant accessi-
bility gains can be obtained throughout the city when considering trips 
that cost up to 12 BRL. These gains are more pronounced along train and 
BRT corridors, ranging from the north of the city towards the west, and 
very limited at the southern and southeastern regions of the city, where 
some of the wealthier neighborhoods are located. In these wealthier 
neighborhoods, the accessibility benefits that result from combining 
ride-hailing and transit only become more prominent when considering 
more expensive trips, of up to 18 and 24 BRL. This is explained by the 
fact that this area has relatively high accessibility levels even without 
considering ride-hailing services, as it is well served by public transport, 
especially the subway. The accessibility gains that result from using ride- 
hailing as a first-mile mode to rapid transit are, therefore, relatively well 
distributed across the city when calculated using absolute monetary cost 
thresholds. The locations that benefit the most are concentrated along 
rapid transit corridors, but significant gains can be seen both on poorer 
neighborhoods located towards the western and northern regions of the 
city and on wealthy areas located at the south and southeastern regions. 

When transport affordability is considered (Fig. 6B), however, the 
spatial distribution of accessibility gains changes dramatically. Acces-
sibility gains become largely concentrated in high-income 

neighborhoods in the south region and near the CBD, whereas low- 
income neighborhoods that could potentially gain large accessibility 
sums when calculating it with absolute cost thresholds show barely any 
gains when calculating it with relative thresholds. This discrepancy is a 
result of the low purchasing power of the residents of such regions, who 
cannot afford the costs of first-mile ride-hailing trips. 

To demonstrate how accessibility differences across income groups 
are affected by these spatial distributions, Fig. 7 presents the distribution 
of accessibility gains among high- and low-income individuals (the 
wealthiest 10 % and the poorest 40 %, respectively). Fig. 7A shows that 
low-income communities could potentially get large accessibility ben-
efits from ride-hailing services, even when compared to those accrued by 
high-income groups: on average, accessibility gains are higher for the 
poorest population than for the richest when limiting monetary costs to 
12 BRL (with a median gain of 2 % versus 0 %), and very similar when 
limiting costs to 18 and 24 BRL (with median gains of 6 % and 8 %, 
respectively). However, because of affordability constraints, the acces-
sibility gains of low-income individuals are nearly eliminated (Fig. 7B), 
as opposed to those of high-income groups, suggesting that on-demand 
rideshare or microtransit services with dynamic routing could largely 
benefit low-income neighborhoods if financial barriers were alleviated. 

In summary, our findings illustrate how differences in accessibility 
between population groups in Rio de Janeiro are largely shaped by the 
high socioeconomic and spatial inequalities observed in the city. Even 
though there are significant accessibility gains to be obtained by inte-
grating ride-hailing services to the transit system in Rio, there are 
important financial barriers that limit who can benefit from these ser-
vices on a daily-basis. As a result, ride-hailing becomes a limited 
mobility solution to improve mass transit and reduce social exclusion - 
particularly in the Global South context where many cities face high 
poverty rates. 

7. Conclusion 

This study examined how ride-hailing shapes spatial and socioeco-
nomic differences in employment accessibility in Rio de Janeiro while 
accounting for the trade-off between travel time and monetary costs, 
considering ride-hailing both as a standalone transportation mode and 
when combined with transit as a first-mile feeder. Our results indicate 
that ride-hailing provides higher employment accessibility than public 
transit when considering trips of up to 40 min, and that the use of ride- 
hailing as a first-mile feeder to transit can significantly expand 
employment accessibility when considering trips that take at least 30 
min. In both cases, though, the accessibility gains from ride-hailing 
come at relatively high out-of-pocket costs. These gains become more 
pronounced when considering trip costs of 12 BRL or more, which are 
expensive when compared to transit fares. As a result, when we account 
for different affordability thresholds where a person could only allocate 
between 10 % and 40 % of their monthly income on commuting costs, 
the accessibility benefits of ride-hailing services accrue mostly to high- 
income individuals. Because transit fare prices in Rio de Janeiro are 
fixed regardless of traveled distances, transit becomes substantially 
cheaper than ride-hailing and thus better able to cater to the needs of 
low-income populations, most of whom live in urban peripheries and 
engage in long commutes. 

These results show that ride-hailing services can importantly shape 
access to opportunities in cities. However, our findings suggest that 
these services do not provide an equitable alternative to public transit 
systems - neither as a standalone mode nor when combined with transit. 
While Transport Network Companies (TNCs) can potentially overcome 
existing transit network gaps, the potential accessibility benefits from 
TNCs to transit-dependent populations are rather limited, since these are 
mostly composed of low-income individuals for whom monetary costs 
are a critical barrier. This suggests that the growth of market-priced 
TNCs is likely to increase levels of transport inequalities within Rio. 

This paper also shows how accessibility estimates can vary greatly 

5 The cut-offs of the wealthiest 10 % and poorest 40 % is inspired by the 
Palma ratio, an inequality measure commonly used in transport studies to 
compare average accessibility conditions of the most well-off and disadvan-
taged population groups (Guzman & Oviedo, 2018; Herszenhut et al., 2022). 
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given different combinations of travel time and monetary cost thresh-
olds. This result draws attention to a broader methodological question 
about the extent to which accessibility estimates and equity analyses 
might be sensitive to whether and how researchers incorporate both of 
these costs in accessibility calculations. Previous research has shown 
that by ignoring monetary costs researchers tend to overestimate the 
accessibility of low-income groups, which may lead to underestimated 
levels of accessibility poverty and inequality (Herszenhut et al., 2022; 
Liu & Kwan, 2020). However, even the use of travel cost functions that 
take monetary costs into account can generate biased results if one 
follows the commonly adopted practice of considering the fastest jour-
neys and then calculating monetary costs sequentially (Conway & 
Stewart, 2019). This study illustrates how using multiobjective- 
optimization routing to calculate Pareto frontiers could be a promising 

way to account for trade-offs between time and money in accessibility 
research. From an equity perspective, taking this trade-off into account 
is particularly important, especially in contexts with great social in-
equalities. However, the use of Pareto frontiers to estimate accessibility 
is still very new, and more research is needed to investigate how trade- 
offs between time and monetary cost can be incorporated in other types 
of accessibility metrics such as gravity-based, utility and person-based 
measures. We hope the Pareto frontier function implemented into the 
R package r5r can unlock some of these research possibilities. 

From a policy perspective, the findings of this study indicate that 
major accessibility gains could be achieved by policies that promote an 
integration between mass transit and some form of on-demand ride-
share. Different transport agencies have been exploring partnerships 
with TNCs to understand the extent to which ridesharing and 

Fig. 6. Employment accessibility gains by ride-hailing combined with transit compared to transit-only accessibility considering a 60-minute travel time threshold 
and multiple monetary cutoff values in terms of absolute costs (A) and cost relative to income (B). Rio de Janeiro, 2019. 
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microtransit with dynamic routing could provide an efficient means to 
serve neighborhoods with lower population density as first- and last- 
mile connection and increase accessibility and ridership (Curtis et al., 
2019; Schwieterman & Livingston, 2019). However, the findings are 
also aligned with the result of previous studies (Brown et al., 2021; Palm 
et al., 2021) that show that policy efforts on integrating rideshare with 
transit are likely not going to benefit low-income communities without 
some form of subsidy. This could be done, for example, by using an 
integrated payment system with fare discounts for transfers between a 
rideshare and transit trips at particular transit stations. 

One limitation of this study is that it uses the latest census data 
available, which was collected over 10 years ago and which could 
generate some bias in the results. Nonetheless, we believe this bias 
should not be strong enough so that it would invalidate the study given 
that we have corrected income data for inflation in the period, and given 
that the spatial distribution of socioeconomic classes in Rio have 
remained fairly stable over the past few decades. This paper also con-
siders only formal jobs. The lack of information on informal jobs is a 
common issue in low- and middle-income countries. Different data 
sources, such as point of interests from OpenStreetMap and social media 
or satellite imagery data could be explored in future research as a proxy 
for the spatial distribution of informal jobs. Another limitation is that we 
consider potential first-mile trips of any length. Even though our results 
did not significantly change when we capped these trips up to 30 min, 
future studies could arrive at more robust results if they could use travel 
behavior data to inform how far people are willing to travel the first-mile 
trip by ride-hailing. Additionally, it would be interesting to compare 

accessibility levels by ride-hailing and traditional taxis. This analysis 
was not possible due to the lack of data, but future studies should 
consider including a scenario of “transit & taxi” to be compared with the 
scenario of “transit & ride-hailing”. 

Moreover, this study has only analyzed employment accessibility 
considering daily commuting costs for single-passenger trips. Given that 
the costs of ride-hailing could be shared among multiple passengers, 
analyzing scenarios in which two or more people ride the same trip 
together would likely yield more favorable results to TNCs. Future 
studies that focus on access to less frequent activities (such as healthcare 
or leisure) could also arrive at different results than the ones found in 
this paper. Further research should also investigate how accessibility by 
ride-hailing and transit compare in cities where the costs of transit fares 
depend on zone- or distance-based rules. Finally, future studies could 
use Pareto frontiers to investigate how travel mode choices are affected 
by accessibility levels when accounting for travel time and monetary 
cost trade-offs. 
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