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A B S T R A C T

Public transit users are among the most vulnerable to extreme heat due to the urban heat island effect and longer 
outdoor exposure. However, few studies have provided detailed measurement of transit riders’ heat exposure and 
discussed the resilience of transit systems in responses to heat exposure. Using 1 m-by-1 m microclimate sim-
ulations and transport network analysis, this paper introduces the Transit Heat Exposure Index (THEI) to gauge 
high-fidelity heat exposure for transit riders. A case study of THEI’s application in Miami, one of the hottest US 
cities, shows that downtown Miami has lower heat exposure due to better transit access, despite higher local 
feels-like temperature. Walking is the primary source of heat compared to waiting, and a few streets and stops 
contribute most exposure. The methodology developed in this study provides a valuable tool to enhance transit 
resilience to heat and develop effective mitigation strategies.

1. Introduction

Extreme heat events present significant risks to public health, 
infrastructure security, and the environment. Extreme heat can cause 
heat exhaustion and heat stroke, which exacerbates preexisting condi-
tions and increase mortality (Dong et al., 2020). Exposure and heat- 
related incidents are projected to become more frequent and severe in 
urban environments due to climate change (Klein and Anderegg, 2021).

Transportation is a major source of heat exposure, especially for 
public transit riders (Fraser and Chester, 2017). Compared with other 
motorized modes of transportation, public transit riders experience 
more extreme heat exposure due to long exposure time when walking 
and waiting and urban heat island effect (Hsu et al., 2021; L. Liu et al., 
2022). The lack of tree canopies and shades can further exacerbate the 
heat exposure (X. Li, 2021). As socially disadvantaged and marginalized 
groups tend to rely on public transit services and lack reliable trans-
portation alternatives, transit heat exposure is also a major equity issue 
to be addressed (Dzyuban et al., 2021). Therefore, extreme heat expo-
sure has major impacts on the resilience of public transit systems.

The existing studies on transit heat exposure have limitations (Gu 
et al., 2024; Huang et al., 2024; R. Li et al., 2023). First, most prior 
studies do not consider travel behavior (e.g., travel time and route 

choice) as a factor in the calculation of heat exposure (Kuras et al., 2017; 
Nazarian and Lee, 2021; Park and Kwan, 2017), even though exposure 
time can be as important as the local temperature. Second, despite 
abundant studies on the community-level thermal comfort and urban 
heat island effect, there is a lack of high-resolution, individual-level heat 
exposure analysis at 1 m level (Kuras et al., 2015). Finally, to our best 
knowledge, no prior studies investigated the primary source of heat 
exposure in transit trips.

Considering the research gaps discussed above, this paper introduces 
a novel methodology to measure high-resolution heat exposure for 
public transit riders with a case study of Miami, Florida. We use high- 
resolution meteorological data, tree canopy, and building LiDAR data 
to calculate a 1 m-by-1 m feels-like temperature map. We also use 
General Transit Feed Specification (GTFS) data to generate high-fidelity 
travel itinerary between all census block groups. Based on these high- 
resolution datasets, we create a new transit-based heat exposure mea-
sure – Transit Heat Exposure Index (THEI) – to measure the high- 
resolution heat exposure during public transit trips. We further 
conduct spatiotemporal analyses and examine the sources of heat 
exposure in different scales. Based on these empirical results, we discuss 
the implications of extreme heat exposure on the resilience of public 
transit systems.
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The paper is structured as follows. We first review the prior literature 
about the measurement of extreme heat and public transit in section 2. 
We then introduce our data and method in section 3. We then present 
our results and discussion in section 4. We finally conclude the paper 
with some high-level insights to provide useful guidance for future 
research and practical planning.

2. Background

This section reviews the literature on extreme heat exposure and 
public transit, organized into three distinct subsections: the measure-
ment of extreme heat exposure, the implications of the built environ-
ment for heat exposure, and heat exposure in public transit systems.

2.1. Measuring extreme heat exposure in urban areas

The measurement of extreme heat exposure has evolved significantly 
in recent decades, reflecting advancements in technology and a growing 
understanding of heat’s impact on both the environment and human 
health (Deschenes, 2014; Wong et al., 2013). In some early studies, basic 
thermometry was the primary method for measuring ambient temper-
atures (Saaroni et al., 2000). However, these methods were limited in 
scope, focusing solely on ambient temperature without considering 
other environmental factors or human physiological responses to heat 
(R. Li et al., 2023). Technological advancements such as satellite im-
aging have enabled large-scale monitoring of surface temperatures and 
the identification of heatwaves, significantly enhancing our ability to 
track and analyze global heat exposure trends (Hu et al., 2023). Addi-
tionally, the field of biometeorology introduced human-centric mea-
sures, integrating human physiological responses to heat into the 
assessment of heat exposure (Kuras et al., 2017). This led to the devel-
opment of thermal comfort models like the Predicted Mean Vote (PMV) 
(Yau and Chew, 2014) and Standard Effective Temperature (SET) (Iseki 
and Tingstrom, 2014). More recent progresses include Mean Radiant 
Temperature (MRT) (Vanos et al., 2021) and Universal Thermal Climate 
Index (UTCI) (Romaszko et al., 2022), which marked a shift towards a 
more nuanced understanding of heat exposure, considering not just 
environmental parameters but also their direct impact on human health 
and well-being.

2.2. Heat exposure and built environment

Built environment has major impacts on human exposure to extreme 
heat, especially for urban dwellers (X. Li, 2021; Nazarian and Lee, 
2021). One of the central themes in this body of research is the urban 
heat island (UHI) effect. The domain primarily study urban areas that 
experience higher temperatures than their rural counterparts nearby 
(Hsu et al., 2021; Yin et al., 2023).

UHI is driven by three main factors: land cover and albedo, urban 
tree canopy, and buildings (Chen et al., 2023; Lu et al., 2021). Urban 
areas often consist of impervious surfaces such as concrete and asphalt, 
which have low albedo, causing them to absorb and retain heat (Y. Liu 
et al., 2024; Nwakaire et al., 2020). This contributes to increased tem-
peratures within cities. Meanwhile, tree canopy and buildings can pro-
vide shades that reduce heat, while trees can have more cooling effects 
via evaporation (Cheung, 2018; Zhang et al., 2022). Previous research 
has shown that trees can lead to average daytime cooling impacts of 
0.6 ◦C for air temperature and 2.5 ◦C for feels-like temperature, sur-
passing those of concrete shelters, which recorded 0.2 ◦C for air tem-
perature and 2.0 ◦C for feels-like temperature, respectively (Cheung, 
2018).

2.3. Heat exposure and public transit

Previous studies have examined how individuals can be exposed to 
varying levels of heat while they move across cities, focusing on groups 

such as outdoor joggers and food delivery riders (X. Li and Wang, 2021a; 
Y. Liu et al., 2024). So far, very few papers have investigated the heat 
exposure of public transit riders. Karner et al. (2015) was among the first 
to discuss the heat exposure experienced by users of public transit as 
well as other non-motorized travel modes, including walking and biking. 
Using simulated trips and 1 km resolution air temperature data, they 
revealed that disadvantaged groups are disproportionately affected by 
extreme heat. Fraser et al. (2017) estimated heat exposure from walking 
to and waiting at bus stops by using shortest distance to the nearest bus 
stop and bus schedules. The paper found that transit users from low- 
density and low-connectivity areas had higher expected exposure due 
to longer walking distances and waiting times. Moreover, Dzyuban et al. 
(2021) surveyed public transit riders about their perceptions of heat and 
behavior changes to cope with heat in Phoenix, Arizona. More recently, 
Fan et al. (2024) introduced a new framework to measure cumulative 
exposure to extreme temperatures during transit trips. They used 30 m- 
by-30 m temperature data and GTFS data in Atlanta, Georgia with a 
regional onboard transit survey to calculate the dynamics in transit trips 
and cumulative exposure for transit riders in 2019.

3. Methods

We introduce our proposed method in this section. We first present 
our case study and data. We then describe two major methodological 
steps of calculating high-resolution thermal comfort data and detailed 
itineraries. Next, we introduce the definition of Transit Heat Exposure 
Index (THEI) and the details of the analyses.

3.1. Data

In this study, we utilized diverse datasets from various sources to 
measure thermal comfort and travel behavior of public transit riders as 
shown in Table 1.

3.1.1. Transit network data
We used the General Transit Feed Specification (GTFS) data, the de 

facto data standard for public transit schedule timetable (Google De-
velopers, 2020). The GTFS data for Miami-Dade County Transit are 
captured near August 1st, 2023 from the Transitfeeds.com
(OpenMobilityData, 2023), when the average temperature was highest 
in 2023. We use the OpenStreetMap network data in September 2023 as 
the data source of sidewalk network.

Table 1 
Data summary of the THEI.

Data type Data name Time period Source

Transportation 
data

GTFS schedule 
data

August 
2023

OpenMobilityData (2023)

OSM road 
network

September 
2023

Geofabrik (2023)

LODES travel 
survey

2021 US Census Bureau Center 
for Economic Studies 
(2023)

Meteorological 
data

Air temperature 
data

August 
2020

NREL (2024)

Global 
horizontal 
radiation
Direct radiation
Diffuse radiation
Relative 
humidity

Built 
environment 
data

Building 
footprint

2014–2023 Microsoft (2024)

LiDAR cloud 
point

2004–2023 U.S Geological Survey 
(2023)

Multispectral 
NAIP imageries

2023 National Agriculture 
Imagery Program (2023)
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3.1.2. Meteorological data
We collected the meteorological data, including average air tem-

perature, global horizontal radiation, direct radiation, diffuse radiation, 
and average relative humidity data, from the NREL data portal for the 
city of Miami as constants (NREL, 2024). All data were collected at the 
latest available timepoint, i.e., August 2020.

3.1.3. Built environment data
We used the building footprint map from Microsoft building foot-

print database (Microsoft, 2018/2024). We also used the most recent 
high-resolution LiDAR cloud point datasets from United States Geolog-
ical Survey (U.S Geological Survey, 2023) and generated 1 m-by-1 m 
digital surface model (DSM). We then used the 1 m-by-1 m multispectral 
NAIP imageries and generated the tree canopy cover maps using the 
thresholding method on the normalized difference vegetation index 
(NDVI) (National Agriculture Imagery Program, 2023). We then refined 
the tree canopy maps based on the generated DSM, and we removed 
those pixels lower than 2 m, since the tree shades lower than 2 m is 
negligible. The building footprint map and the generated tree canopy 
map were then overlayed on the DSMs to generate the building height 
model and tree canopy height model for the study area.

Our case study focuses on the city of Miami, Florida, USA. Florida is 
one of the most vulnerable areas to heat exposure and heat-related 
mortality in the United States (Keellings and Waylen, 2014), and 

Miami is among the hottest city in the US with an average annual 
temperature of 26 ◦C from 2009 to 2021 (World Weather Online, 2024); 
The hottest month ever recorded was July 2023, when the temperature 
was higher than 37 ◦C for 46 consecutive days in Miami (Crowley, 
2023). Heat-related mortality in Miami was also reported to be much 
higher than northern cities in the US (Curriero et al., 2002), with the 
duration and frequency of the extreme heat events expected to be much 
higher due to climate change (McAllister et al., 2022). Furthermore, 
Florida is the third most populous state in the US with over 20 % of its 
population older than 65 years old, who are more susceptible to heat 
exposure and heat-related illnesses (US Census Bureau, 2020).

3.2. Feels-like temperature calculation

The mean radiant temperature (Tmrt) is the net shortwave and 
longwave radiation to which human body exposed from the surrounding 
environment and the Tmrt is the most significant meteorological input 
parameter for the human energy balance especially during clear and 
calm summer days (Mayer and Höppe, 1987). Per the Stefan-Boltzmann 
law, Tmrt is defined as, 

Tmrt =
̅̅̅̅̅̅̅̅̅̅̅̅
R/εpσ4

√
− 273.15 (1) 

where σ is the Stefan-Boltzmann constant and εp is the emissivity of the 

Fig. 1. The calculation of the Tmrt with the SOLWEIG model based on tree canopy height model, building height model, and meteorological data using the GPU- 
accelerated algorithm, (a) the SOLWEIG model for computing the mean radiant temperature, (b) the GPU structure.
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human body with the standard value of 0.97. R represents total radiation 
exposure as the sum of short and long wave radiation from above, below, 
and the four cardinal directions, which can be calculated as, 

R = ξk

∑6

1
KiFi + εp

∑6

1
LiFi (2) 

where Ki is the shortwave radiation component from west, east, north, 
south, top, and bottom, Li is the longwave radiation, Fi is the angular 
factor between an individual and their surrounding environment, ξk is 
the absorption coefficient for shortwave radiation with a standard value 
of 0.7. We used the GPU-accelerated Solar and LongWave Environ-
mental Irradiance Geometry model (SOLWEIG) (X. Li and Wang, 2021b) 
to calculate the Tmrt with the meteorological and built environment data 
(Fig. 1). We chose to calculate the temperature with 1 m-by-1 m reso-
lution. This high-resolution analysis is to match the detailed network 
simulation generated from transport network analysis at the meter and 
second level. The heat exposure data must also match this level of 
granularity to accurately calculate high-resolution exposure for each 
trip. For example, sidewalk widths are usually 1–2 m wide, and the area 
of a single tree canopy is also at a similar scale. Therefore, feels-like 
temperature can be very different within even several meters. Using 
lower-resolution heat exposure data could introduce bias, as it may 
overlook these fine-scale variations that significantly impact exposure 
calculations.

3.3. Transport network analysis

We conducted public transit network analysis to generate the 
detailed itineraries of transit trips in the form of origin-destination 
matrix. We first chose the centroids of census block groups as the ori-
gins and destination to simulate the door-to-door travels, because census 
block groups are the smallest geographic units with the most up-to- 
updated LODES data, which can serve as the weight when aggregating 
the heat exposure measure.

We then calculated the shortest path between each OD pair. We used 
an open-source solution – r5r – an R package that calculates rapid 
realistic routing for multimodal transportation networks (Pereira et al., 
2021). We utilized r5r’s detailed itinerary function, which outputs the 
detailed trip information between origin-destination pairs, including 
first/last-mile walking time, waiting time, in-vehicle time, and geometry 
for each trip. We set the maximum walk time as 30 min, the maximum 
trip duration as 60 min, walk speed as 1 m/s, and maximum rides as 3 
rides. We also calculated the average travel time from August 1st to 
August 7th, 2023. We imported the large amount of CSV files generated 
by the package and synthesized the data into organized records in a 
single collection in a MongoDB database.

3.4. Exposure measurement

We introduce the Transit Heat Exposure Index (THEI), a new mea-
sure that considers both temperature and temporal factors. We adopt a 
total degree-second approach, i.e., the sum product of feels-like temper-
ature and exposure time, to construct the measurement similar to Karner 
et al. (2015) and Ahmed et al. (2024). Compared with air or ground 
temperature, Mean Radiant Temperature (MRT) can better capture 
personal thermal comfort experience; MRT is also more suitable in the 
sense of thermodynamics as MRT is an additive measure of the net ex-
change of radiant energy between the human body and the surrounding 
environment. We define the heat exposure from census block group i to j 
as: 

hij = ht
ij + hw

ij + hv
ij =

∑

k

tt
ijk⋅Tt

ijk +
∑

l

tw
ijl⋅T

w
ijl (3) 

The total heat exposure can be decomposed into three sections based 
on the environment the users are experiencing in a typical transit trip: 
ht

ij, i.e., walking along a road link, hw
ij , i.e., waiting at a bus stop, and hv

ij, i. 

e., riding in a vehicle. 

• Walking. ttijk is the walking travel time along road segment k when 
travelling from origin i to destination j, including first-mile, last-mile, 
and transfer, and Tt

ijk is the MRT in the corresponding location. In 
practice, we calculate the cumulative MRT in each road link by 
overlaying the generated MRT raster against the road network using 
the method ZonalStatisticsAsTable in ArcGIS Pro.

• Waiting. Similarly, tw
ijl is the waiting time at stop l when travelling 

from origin i to destination j, and Tw
ijl is the feels-like temperature at 

stop l.
• In-vehicle. In this study, we assume that users do not suffer from 

heat exposure in the vehicles, since all buses in Miami have air 
conditioning. However, it is also important to note that this 
assumption only hold for the context of United States. For many 
cities in the Global South, heat exposure when riding is an equally 
important issue and might be aggravated due to passenger crowding 
(Arbex and Cunha, 2020).

Fig. 2 shows the methodological structure of THEI as discussed 
above.

3.5. Analysis

With the heat exposure measured for each individual OD pair, we 
performed aggregations at various analytical levels to better understand 
the spatiotemporal patterns.

3.5.1. Total transit heat exposure index (Total THEI)
We introduce total THEI to capture the sum of the potential heat 

exposure that would have been experienced by transit riders travelling 
between all origin-destination pairs weighted by the number of trips 
between each OD pair. As such, total THEI consists of two components: 
one is the potential exposure of each trip, and the other is the number of 
passengers taking those trips. When taking the trip origins as a reference, 
total THEI is defined as 

Ho
i =

∑

j
wij⋅hij (4) 

Where Ho
i is the origin-based total exposure for the origin i. hij is the 

heat exposure for the OD link. Note that we aggregate the OD links to 
their origin here, which measures the total exposure experienced by 
riders departing from the census block group i when accessing all other 
destinations. wij is a weight to aggregate the exposure of different OD 
pairs, which can be based on actual ridership, potential demand, or local 
and destination demographics. We used the most recent commuter flows 
in 2021 from Longitudinal Employer-Household Dynamics (LODES) 
data as a yearly proxy for potential trips across OD pairs. Ridership data 
of higher resolution and quality can also be used as the weight, such as 
mobile device GPS data or smart card data; however, it is noteworthy 
that aggregated ridership data, such as Automatic Passenger Counter 
(APC) data, cannot be used due to the lack of OD flow information.

We also aggregated the OD links to their destination and produced a 
destination-based heat exposure, which measures the exposure experi-
enced by all riders that travel to the census block group j. It is defined as 

HD
j =

∑

i
wij⋅hij (5) 

Where HD
j is the destination-based total exposure to the destination j.

3.5.2. Mean transit heat exposure index (Mean THEI)
Total THEI or total exposure is a function of three factors: 1) the 

feels-like temperature at the waiting stops and the street links, 2) the 
average travel time, and 3) the number of trips originated to/from a 
given location. In other words, with more ridership or demand between 
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the OD pair, the total exposure will increase. Therefore, to gauge transit- 
based heat exposure with a temperature-esque measure, we introduce 
the mean THEI. It is a measure of average level of heat exposure expe-
rienced by transit riders during their transit trip experience. It is defined 
as: 

e =
H
t
=

∑
wij⋅hij
∑

tij
(6) 

Where: H is the total THEI, which could be aggregated to the origins, 
destinations, or networks. t is the total travel time, which is calculated as 
the sum of all trips, including the walking, waiting, and in-vehicle time. 
Note that the unit of e is Celsius, the same as temperature. The measure 
represents the heat that public transit users experienced in a single unit 
amount of time, which is independent of the number of trips made.

Similar to the total exposure, mean THEI can also be calculated for 
the entire transit systems or using the origin-base and destination-based 
versions of the measure.

3.5.3. Heat exposure composition from walking and waiting
It is largely unknown from prior studies whether walking or waiting 

is responsible for most of the heat and the specific composition of the 
heat generated from the two processes. A major advantage of the 
method introduced in this paper is the ability to produce high-resolution 
heat exposure measures at a very detailed level for each segment of a 
trip, which allows one to decompose the total heat exposure due to 
exposure during walking and waiting times. The share of heat from 
walking time can be calculated as: 

r =
Hw

Ht + Hw (7) 

Where r is the share of heat exposure from walking, Ht is the total 
THEI from waiting, and Hw is the total THEI from walking.

3.5.4. Network-based heat exposure
The network-based THEI metric measures the contribution of each 

road link and bus stop to total heat exposure by considering the time 
spent by the total number of users that traverse each road or wait at each 
stop. The contribution of each road link and stop to total heat exposure is 
defined as 

HT
k =

∑

ij
wij⋅hijk (8) 

Where: HT
k is the exposure contribution of a road or a stop T, and hijk 

is the heat exposure experienced at the road/stop k by a user travelling 
from census block i to census block j. In practice, we calculated three 
measures: 1) total exposure of each road when walking, which measures 
the heat contribution of the road to all users’ heat exposure, 2) total 
exposure for each bus stop when waiting, which measures the heat 
contribution of the bus stop to all users’ heat exposure, and 3) the sum of 
the two exposures aggregated their corresponding census block group. 
We used the spatial join function with largest overlap operation in the 
ArcGIS Pro to calculate the third measure, which means if a street link 
crosses two census block groups, we will be aggregating its heat to the 
census block group with which it has the largest overlap.

4. Results

4.1. Spatiotemporal pattern of THEI

Fig. 3 visualizes the total exposure in each census block group for 
Miami in quantile classification. In general, the accumulated heat 
exposure to heat of transit passengers travelling to and from neighbor-
hoods in the suburban areas was rather low. This is largely because there 
were very few transit trips to and from these neighborhoods due to low 
transit connectivity. However, it is also noteworthy that the core of the 
downtown also presented lower total exposure which generally has 
higher local feels-like temperature and higher amounts of public transit 
trips and higher accessibility.

This counter-intuitive results arise because THEI considers human 
mobility behavior when calculating heat. Total THEI is dependent on 
three components: potential exposure time, temperature values, and 
number of trips. While the downtown is generally a heat island with 
higher local temperature, it usually has more frequent transit services 
and higher density, which makes the residents there wait less and walk 
less. Meanwhile, the weight, i.e., commute flow, is also higher in 
downtown. Therefore, the number of trips, feels-like temperature, and 
exposure time can have heterogenous effect on the outcomes: higher 
feels-like temperature, higher number of trips, and higher exposure time 
can all contribute to a higher total exposure.

Meanwhile, Fig. 3 shows the resemblance between the origin-based 
and destination-based measures. It can be because unconnected areas 
generally have lower access to and from other places, and most public 
transit routes are symmetrical, which means the trips back and forth 

Fig. 2. A diagram showing the methodological structure of THEI.
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generally have similar travel time and geometries.

4.1.1. Mean THEI
In contrast to total THEI, the mean THEI is primarily determined by 

feels-like temperature and exposure time. To investigate the patterns of 
the average heat exposure, we further visualized the mean THEI in 
Fig. 4. The mean transit heat exposure in Miami downtown core was 
significantly lower than their urban outskirts and suburbs. This means 
that the average experienced heat in a unit amount of time when a 
resident is accessing other opportunities via public transit is lower in the 
downtown core. The downtown areas generally have higher level of 
transit infrastructure and sidewalk infrastructure, which reduces 
walking, waiting, and transfer time (L. Liu and Miller, 2020; Wang and 
Cao, 2017). For example, the exposure from walking in downtown tends 

to be much lower since downtowns have much higher density, more 
high-level buildings and tree canopies, and more extensive sidewalk 
network (X. Li, 2021; L. Liu et al., 2023). Moreover, the exposure during 
waiting would also tend to be lower due to higher frequency for transit 
routes in downtown area.

Meanwhile, like the total exposure, the origin-base and destination- 
based measures are highly similar for the same reasons stated above. 
There could be factors that contribute to the minor differences, such as 
differences in transit geometry and travel time and asymmetrical 
commute flow from and to the location.

4.2. Source of heat exposure

Fig. 5 visualizes the heat exposure from walking and waiting, 

Fig. 3. Total THEI of every census block group in Miami. Left: aggregated by origin; right: aggregated by destination. Maps are generated per the origin-based layer’s 
quantile classification.

Fig. 4. Mean THEI of every census block group in Miami. Left: aggregated by origin; right: aggregated by destination. Maps are generated per the origin-based layer’s 
quantile classification.
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respectively. Note that we aggregated the heat to their origin, meaning 
that the measures represent the heat experience of local residents when 
accessing other opportunities. First, between walking and waiting, 
walking accounts for most of the heat exposure in Miami. Fig. 6 also 
visualizes the share of exposure from walking out of the total heat 
exposure. This confirms that walking is the main source of heat exposure 
in Miami with a global average of 86 %, meaning that 86 % of heat 
exposure is from walking during first mile, last mile, and transfers, and 
only 14 % of heat exposure is from waiting at bus stops. In a practical 
sense, this provides firsthand evidence that future interventions should 
prioritize improving the walking experience of public transit passengers, 
despite being a functional but not an intrinsic part of the public transit 
system and outside transit authorities’ responsibility. Second, Fig. 5 also 
visualizes the histogram of the two maps, and the two values have very 
different patterns. Interestingly, heat exposure from walking follows a 
normal distribution, while heat exposure from waiting follows a log- 
normal distribution.

Fig. 7 visualizes the heat contribution of each street link and bus 
stop. Only a very small number of street links contributed to the total 
heat exposure. Out of 1,066,000 street links, only 98,879 street links 
generated heat exposure. Meanwhile, the distribution of heat contribu-
tion is highly uneven. The top 5000 street segments generating heat 
exposure, which is 5 % of street links with nonzero heat generation and 
less than 0.5 % of all street links, account for 60 % of the heat exposure 
generation on roads. This means that authorities can concentrate 

intervention efforts on a small number of road links in the sidewalk 
network, such as adding tree canopies and sidewalk shelters, to reduce 
the heat exposure of most of the transit riders. As an example, the mere 
top 100 street segments, whose length is only 16 km in total, account for 
almost 10 % of the heat exposure. This finding provides actionable in-
formation for the authorities to address the heat issue in a very practical, 
efficient, and cost-effective manner.

Meanwhile, the heat exposure at bus stops is not negligible. Among 
the 8164 bus stops, only at 3987 bus stops (less than half) have riders 
exposed to heat, and the top 400 bus stops (top 5 %) account for 67 % of 
the total heat exposure at bus stops. This resonates well with and com-
plements our findings above that targeted interventions could substan-
tially reduce the heat exposure of transit passengers at very low costs. In 
fact, due to the nature of bus stops, it is significantly easier to install 
shelters at the bus stops than on the sidewalks, in terms of both labor and 
economics, to reduce transit users’ exposure to heat. And the installation 
of bus shelters is also positively associated with other factors such as 
increased ridership, safety, and revenue (Ewing, 2000; Kim et al., 2020).

Fig. 8 further combines the two sources of heat together and aggre-
gates them to each census block group. As a star-shape public transit 
system, which heavily depends on transfers near the downtown, it is 
intuitive and natural to observe that most of the generated heat is from 
the heart of the city. Meanwhile, it is also interesting that the high-heat- 
contribution areas can also have much lower mean THEI for local resi-
dents (origin-based) and lower mean THEI for other travelers to there 

Fig. 5. Heat exposure from walking and waiting. Map symbols are generated with quantile classification.
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(destination-based), which means the areas that contribute the most to 
the heat can have a much lower experienced heat exposure for local 
residents. This also resonates well with the discrepancy between MRT 
and THEI measures.

5. Discussion

Our spatiotemporal analyses in Miami offer multiple practical in-
sights, which would make potential impacts on future research and 
planning works. We discuss how the application of THEI can inform 
strategies to enhance transit systems’ heat resilience in three aspects:

5.1. Immediate adaptation

Our results show that there are multiple adjustments that transit 
systems can enact to immediately remedy the heat exposure of the 
transit users. First, there is an urgent need to adopt a behavior-centric or 
people-centric approach to measure people’s heat exposure experience 
(Miller, 2005; Park and Kwan, 2017). Although traditional place-centric 
measures, i.e., measuring the heat experience of users by their home/ 
local temperature, have been proven to be useful, these place-based 
measures may not be an accurate representation of people’s heat expe-
rience, as shown in Fig. 9. Note that this insight applies to all people 
(Karner et al., 2015), although it may be more pronounced among public 
transit riders. For example, a drivers’ perceived heat exposure would not 

Fig. 6. Proportion of exposure due to walking. Maps are generated with 
quantile classification.

Fig. 7. Heat exposure on road links and bus stops. Maps are generated with natural break Jenks classification.

Fig. 8. Generated total exposure for each census block group. Symbols are 
generated with quantile classification.
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be their local heat situation around their home, but rather more about 
the heat near their destination or parking. To achieve this goal, we need 
a coordinated endeavor to integrate the existing research on travel 
behavior research and city planning.

The introduction of THEI also creates new opportunities to adjust bus 
timetables via optimization methods to reduce heat exposure during 
future interventions. Meanwhile, the case study shows that walking is 
the primary source of transit heat exposure in Miami-Dade County, 
which suggests local governments should prioritize reducing walking 
exposure during future intervention. In other words, solving the first- 
mile and last-mile problem is still the priority of future transit plan-
ning, particularly in the context of combating heat exposure. However, 
very few papers discussed the optimization of transit systems based on 
heat exposure, which could be a potential topic for future research.

5.2. Long-term preparedness

With high-frequency transit service, connected walking infrastruc-
ture, and well-optimized timetable, Miami downtown has much lower 
exposure than other suburbs and nearby urban outskirts, despite having 
similar or even higher local feels-like temperature. This conclusion can 
be seemingly contradicting with prior studies that use traditional static 
measures (Deilami et al., 2018; Nwakaire et al., 2020), but it is consis-
tent with the finding in a recent behavior-based exposure study (Ahmed 
et al., 2024). Therefore, transport infrastructure plays a greater role than 
environmental conditions, allowing us to strategically enhance the built 
environment to strengthen system resilience.

Furthermore, a very small percentage of road links and bus stops 
contribute to most heat exposure for all public transit users. This finding 
points out a practical and efficient solution to the heat exposure prob-
lem: it suggests that targeted interventions to create shades via tree 
planting or shelter building on very few critical street links and bus stops 
would be sufficient to reduce heat exposure for many people across a 
broad area.

Similarly, our results also provide evidence for future stop-level 
infrastructure building. Although heat exposure during waiting times 
at bus stops is not the dominating factor, building bus shelters and 

planting trees at targeted bus stops could be a much easier and more 
effective intervention, whose effectiveness have been extensively dis-
cussed by prior studies (Dzyuban et al., 2021; Lanza and Durand, 2021). 
For example, some recent thermal technological progress, such as nat-
ural cooling stations, can be enacted at bus stops but not on road links. 
This can decrease the feels-like temperature at the stops to a lower level 
than on the roads, providing more potentials for heat reduction (Medina 
et al., 2022; Mokhtari et al., 2022). Meanwhile, as road work and 
improvement are usually out of the jurisdiction of public transit au-
thorities, the intervention on the bus stop level is also more practical 
from a political and legal standpoint.

5.3. Social impacts

Extreme heat disproportionately affects vulnerable populations, 
including low-income communities and transit-dependent individuals. 
The proposed THEI serves as a valuable tool for assessing the social 
impacts of extreme heat on communities and population groups, 
providing innovative and practical insights to guide transit heat resil-
ience strategies. For example, our Miami case study reveals that transit- 
dependent communities who rely on low-frequency bus services expe-
rience disproportionately higher heat exposure, particularly in the 
urban outskirts. Transit agencies can address this disparity by increasing 
the service frequency or adjusting the timetable. People older than 55 
years old are especially vulnerable to extreme heat and long-time travel. 
However, Western Miami (Kendall), which has a higher percentage of 
senior residents, has higher average heat exposure during transit trips. 
Likewise, some areas with more people with disabilities also have higher 
exposure, which can exacerbate inequalities. Meanwhile, transit-related 
heat exposure for city residents may not necessarily be higher in areas 
marked by urban heat island effect. This challenges the common 
assumption that urban centers inherently experience greater heat 
exposure. Instead, cities can overcome the natural environmental dis-
advantages for transit-dependent communities by resilience planning 
and long-term infrastructure improvements, as we systematically dis-
cussed above.

There are multiple topics that future studies can further address. 
Future research can use the THEI system to minimize heat exposure in a 
city or for a public transit system. While it is hard to control the tem-
perature, it is within the power of transit planners and transit authorities 
to conduct system redesign to reduce exposure time. Future research 
could also explore strategies for positioning tree canopies or bus stops to 
help lower temperatures.

A major limitation of the method is that the meteorological param-
eters in the SOLWEIG model are constant for the whole city due to the 
lack of higher-resolution data, and the temporal resolution of the 
meteorological data is 30 min. Future studies should use meteorological 
data with higher resolutions if possible. Future studies could also try to 
incorporate other factors that can contribute to heat exposure in transit 
trips, such as how thermal comfort might be affected by vehicle 
crowding and terrain elevation. Meanwhile, while we have provided 
some discussions on the contributing factors of transit heat exposure 
index, we believe that future studies should expand the analysis of heat 
sources and discuss the heterogeneous implications for different de-
mographic groups. Future studies should also explore different in-
terventions, such as strategic tree planting at high-volume street links, to 
reduce heat exposure and address heat-related concerns in trans-
portation equity.

The method employed in this study first determines the fastest trip 
itinerary between a given OD pair and subsequently calculates heat 
exposure. Future research could try to incorporate heat exposure while 
walking along street links into the routing algorithm to reflect how some 
pedestrians choose their trip itineraries trying to travel time and heat 
exposure costs. Finally, the paper used the annual LODES survey in 2021 
to weigh the 2023 heat exposure data because the most recent LODES 
data in 2023 are still unavailable, which can reduce the accuracy of our 

Fig. 9. Bivariate map of Miami’s mean THEI (mobility-based heat exposure) 
and mean radiant temperature (local heat exposure). Map symbols are gener-
ated with 3*3 quantile classification.
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empirical results and harm the generalizability of these findings. Future 
studies can use data from the same year and more accurate or higher- 
resolution ridership data as weights to enhance the robustness of 
study findings. In addition, while the method proposed here provides a 
replicable and scalable model that can be applied in different cities or 
contexts for transit heat exposure measurement, the THEI index can be 
further validated and refined through on-the-ground data collection 
efforts such as personal monitoring with mobile sensors.

6. Conclusion

This study introduces the Transit Heat Exposure Index (THEI), a 
novel and comprehensive method for measuring heat exposure experi-
enced by public transit riders. By integrating high-resolution microcli-
mate simulation and transit routing techniques, our approach captures 
detailed feels-like temperatures and travel times to provide an accurate 
assessment of heat exposure in a complex urban environment. The 
empirical results in Miami, Florida, show that despite the urban heat 
island effect causing higher temperatures, better transit access reduces 
overall heat exposure in downtown Miami. Walking, rather than wait-
ing, is the primary source of heat exposure, showing the importance of 
pedestrian infrastructure in mitigating heat risk. Additionally, a small 
number of streets and bus stops contribute disproportionately to transit 
heat exposure, highlighting opportunities for targeted interventions.

This method fills a major knowledge gap by providing spatially 
detailed data on heat exposure, enabling urban planners and policy-
makers to design more heat-resilient transit systems. By identifying 
high-exposure zones and understanding the primary sources of heat, 
future strategies can focus on improving shade coverage, tree canopy, 
and transit access. The findings from this study offer a new approach for 
reducing heat exposure in public transit, improving thermal comfort, 
and enhancing equity for vulnerable populations who rely on transit 
services.
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